已知:如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE
1个回答
展开全部
证明:∵AB∥DE,
∴∠B=∠DEF.
∵AC∥DF,
∴∠ACB=∠F,
∵BE=CF,
∴BE+EC=EC+CF,
即BC=EF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA),
∴AB=DE.
∴∠B=∠DEF.
∵AC∥DF,
∴∠ACB=∠F,
∵BE=CF,
∴BE+EC=EC+CF,
即BC=EF,
在△ABC和△DEF中,
|
∴△ABC≌△DEF(ASA),
∴AB=DE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
leipole
2024-11-29 广告
2024-11-29 广告
上海雷普电气有限公司(以下简称雷普电气)是一家集研发、生产、销售、服务为一体的科技型企业。一直以来,公司秉承“以科技改变生活,为社会创造美好”的理念,旗下“低压电源为主导” 的电联接件及接口模块系列、继电耦合系列、风扇及过滤器系列、机床控制...
点击进入详情页
本回答由leipole提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询