已知函数f(x)=x+2,g(x)=x^2-x-6 (1)解不等式f(x)>g(x)(2)当x满足

已知函数f(x)=x+2,g(x)=x^2-x-6(1)解不等式f(x)>g(x)(2)当x满足f(x)>g(x)时,求函数g(x)+1/f(x)的最小值要过程... 已知函数f(x)=x+2,g(x)=x^2-x-6 (1)解不等式f(x)>g(x)(2)当x满足f(x)>g(x)时,求函数g(x)+1/f(x)的最小值 要过程 展开
 我来答
没杀气的瓦
2015-08-08 · TA获得超过640个赞
知道小有建树答主
回答量:639
采纳率:50%
帮助的人:136万
展开全部
令F(x)=f(x)-g(x)= -x^2+2x+8,
F(x)=-x^2+8是开口向下的抛物线。两个根为4和-2。
所以在(-2,4)内,F(x)大于0,也即f(x)大于g(x)
f(x)是单调递增的函数。所以它在(-2,4)的最大值为6。1/f(x)最小值为1/6
g(x)=(x-1/2)^2-25/4,所以最小值为-25/4,
所以y=g(x)+1/f(x)最小值为-25/4+1/6=-73/12
追答
我只能做到这了
基本就是这样
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
doyouseeman
2015-08-08 · TA获得超过1565个赞
知道小有建树答主
回答量:451
采纳率:50%
帮助的人:93.9万
展开全部
如果学过导数就方便许多了。没学过就只能老实一点了。
令F(x)=f(x)-g(x)= -x^2+2x+8,
F(x)=-x^2+8是开口向下的抛物线。两个根为4和-2。
所以在(-2,4)内,F(x)大于0,也即f(x)大于g(x)
f(x)是单调递增的函数。所以它在(-2,4)的最大值为6。1/f(x)最小值为1/6
g(x)=(x-1/2)^2-25/4,所以最小值为-25/4,
所以y=g(x)+1/f(x)最小值为-25/4+1/6=-73/12
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式