偏导数在某一点处连续是什么意思?
某一点处连续,x=f(x,y),在某个特殊点处是否连续,常见的是二元函数的分段点。
若要验证在某一点是否连续,首先用定义式求对x、y的偏导数,高数书上都有,我这没法打出来。
然后利用求导公式求偏导,这个就比较简单了。同样对x、y。
最后就是把这个特殊点带入用定义式所求的式子,以及求导公式所求的式子,看两边的值是否一样,一样就连续,否则不连续。
连续你可以理解为函数为一条连续的不间断的光滑曲线。
扩展资料:
x方向的偏导
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或。函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。
y方向的偏导
同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。
在一元函数中,导数就是函数的变化率。对于二元函数研究它的“变化率”,由于自变量多了一个,情况就要复杂的多。
在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般说来是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。
在这里我们只学习函数 f(x,y) 沿着平行于 x 轴和平行于 y 轴两个特殊方位变动时, f(x,y) 的变化率。
偏导数的表示符号为:∂。
偏导数反映的是函数沿坐标轴正方向的变化率。
参考资料:
2017-05-11
若要验证在某一点是否连续,首先用定义式求对x、y的偏导数,高数书上都有,我这没法打出来。
然后利用求导公式求偏导,这个就比较简单了。同样对x、y。
最后就是把这个特殊点带入用定义式所求的式子,以及求导公式所求的式子,看两边的值是否一样,一样就连续,否则不连续。
连续你可以理解为函数为一条连续的不间断的光滑曲线。
偏导数在某点的函数值等于该点的极限值
求采纳
广告 您可能关注的内容 |