判断函数f(x)=ln[x+√(1+x²)]的奇偶性??????
步骤f(-x)=ln[-x+√(1+x²)]=ln【1/(x+√(1+x²))】=-ln[x+√(1+x²)]=-f(x)是如何化简得???...
步骤f(-x)=ln[-x+√(1+x²)]=ln【1/(x+√(1+x²))】=-ln[x+√(1+x²)]=-f(x)是如何化简得??????
展开
展开全部
f(x)=ln(x+√(1+x²))
f(-x)=ln(√(1+x²)-x)
f(-x)+f(x)
=ln[√(1+x²)+x]+ln[√(1+x²)-x]
=ln{[(1+x²)+x][√(1+x²)-x]}
=ln[(1+x²)-x²]
=ln1
=0
∴f(-x)=-f(x)
f(x)为奇函数
扩展资料
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数);
偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能代表其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这样来看更容易理解:
f(x)=ln[x+√(1+x²)]
f(-x)=ln[-x+√(1+x²)]
两式相加,得:f(x)+f(-x)=ln[x+√(1+x²)][-x+√(1+x²)]
=ln[(1+x²)-x²]
=ln1
=0
因此f(-x)=-f(x)
f(x)=ln[x+√(1+x²)]
f(-x)=ln[-x+√(1+x²)]
两式相加,得:f(x)+f(-x)=ln[x+√(1+x²)][-x+√(1+x²)]
=ln[(1+x²)-x²]
=ln1
=0
因此f(-x)=-f(x)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=ln(x+√(1+x²))
f(-x)=ln(√(1+x²)-x)
f(-x)+f(x)
=ln[√(1+x²)+x]+ln[√(1+x²)-x]
=ln{[(1+x²)+x][√(1+x²)-x]}
=ln[(1+x²)-x²]
=ln1
=0
∴f(-x)=-f(x)
f(x)为奇函数
f(-x)=ln(√(1+x²)-x)
f(-x)+f(x)
=ln[√(1+x²)+x]+ln[√(1+x²)-x]
=ln{[(1+x²)+x][√(1+x²)-x]}
=ln[(1+x²)-x²]
=ln1
=0
∴f(-x)=-f(x)
f(x)为奇函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(-x)=ln(-x+√x²+1)
=ln(-x+√x²+1)
=ln[(-x+√x²+1)*(x+√x²+1)/(x+√x²+1)]
=ln[1/(x+√x²+1)]
=ln1-ln(x+√x²+1)
=0-ln(x+√x²+1)
=-f(x)
希望我的解答对您有所帮助
=ln(-x+√x²+1)
=ln[(-x+√x²+1)*(x+√x²+1)/(x+√x²+1)]
=ln[1/(x+√x²+1)]
=ln1-ln(x+√x²+1)
=0-ln(x+√x²+1)
=-f(x)
希望我的解答对您有所帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询