数学题,求详细解释
展开全部
由于当|x|<=1时,总有|f(x)|<=1
则有|f(0)|=|c|<=1,|f(1)|=|a+b+c|<=1,|f(-1)|=|a-b+c|<=1
所以2|a+c|=|2a+2c|=|(a+b+c)+(a-b+c)|<=|a+b+c|+|a-b+c|<=2,得|a+c|<=1
所以|a|=|a+c-c|<=|a+c|+|c|<=2
|f(2)|=|4a+2b+c|=|2a+2b+2c+2a-c|<=|2a+2b+2c|+|2a|+|c|=2|a+b+c|+2|a|+|c|<=2*1+2*2+1=7
则有|f(0)|=|c|<=1,|f(1)|=|a+b+c|<=1,|f(-1)|=|a-b+c|<=1
所以2|a+c|=|2a+2c|=|(a+b+c)+(a-b+c)|<=|a+b+c|+|a-b+c|<=2,得|a+c|<=1
所以|a|=|a+c-c|<=|a+c|+|c|<=2
|f(2)|=|4a+2b+c|=|2a+2b+2c+2a-c|<=|2a+2b+2c|+|2a|+|c|=2|a+b+c|+2|a|+|c|<=2*1+2*2+1=7
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询