向量相乘公式
向量a=(x1,y1),向量b=(x2,y2)
a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)
PS:向量之间不叫"乘积",而叫数量积。如a·b叫做a与b的数量积或a点乘b
向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。
扩展资料
向量几何表示
向量可以用有向线段来表示。
有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。
代数规则
1、反交换律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。
4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。
6、两个非零向量a和b平行,当且仅当a×b=0。
参考资料:百度百科-向量积
2024-10-13 广告
向量相乘公式如下:
向量积(向量相乘),数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。
与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。
扩展资料:
向量积性质:
一、几何意义及其运用
叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。
二、代数规则
1、反交换律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。
4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。
6、两个非零向量a和b平行,当且仅当a×b=0。
向量的乘积公式
向量a=(x1,y1),向量b=(x2,y2)
a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)
PS:向量之间不叫"乘积",而叫数量积..如a·b叫做a与b的数量积或a点乘b
向量积公式
向量积|c|=|a×b|=|a||b|sin<a,b>
向量相乘分内积和外积
内积 ab=丨a丨丨b丨cosα(内积无方向,叫点乘)
外积 a×b=丨a丨丨b丨sinα(外积有方向,叫×乘)那个读差,即差乘,方便表达所以用差。
另外 外积可以表示以a、b为边的平行四边形的面积
=两向量的模的乘积×cos夹角
=横坐标乘积+纵坐标乘积
2016-03-31
向量a=(x1,y1),向量b=(x2,y2)
a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)
PS:向量之间不叫"乘积",而叫数量积..如a·b叫做a与b的数量积或a点乘b
希望能帮到你,满意望采纳哦。
a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)
PS:向量之间不叫"乘积",而叫数量积..如a·b叫做a与b的数量积或a点乘b