高等数学,第3题和第4题怎么做,需要过程。急求高手帮忙
1个回答
展开全部
3. x+z = yf(x^2-z^2)
得 1 + z'<x> = y(2x-2zz'<x>)f'
z'<y> = f -2yzz'<y>f'
则 z'<x> = (2xyf'-1)/(1+2yzf')
z'<y> = f/(1+2yzf')
zz'<x> + yz'<y> = (2xyzf'-z+yf)/(1+2yzf')
= (2xyzf+x)/(1+2yzf') = x
4. 记 u = y+1/x, v = z+1/y, 则 F(u, v) = 0
F'<u>u'<x>+F'<v>v'<x> = 0
F'<u>u'<y>+F'<v>v'<y> = 0
即 (-1/x^2) F'<u>+F'<v>z'<x> = 0
F'<u>+(z'<y>-1/y^2)F'<v> = 0
得 z'<x> = F'<u>/(x^2F'<v>)
z'<y> =1/y^2 - F'<u>/F'<v>
得 1 + z'<x> = y(2x-2zz'<x>)f'
z'<y> = f -2yzz'<y>f'
则 z'<x> = (2xyf'-1)/(1+2yzf')
z'<y> = f/(1+2yzf')
zz'<x> + yz'<y> = (2xyzf'-z+yf)/(1+2yzf')
= (2xyzf+x)/(1+2yzf') = x
4. 记 u = y+1/x, v = z+1/y, 则 F(u, v) = 0
F'<u>u'<x>+F'<v>v'<x> = 0
F'<u>u'<y>+F'<v>v'<y> = 0
即 (-1/x^2) F'<u>+F'<v>z'<x> = 0
F'<u>+(z'<y>-1/y^2)F'<v> = 0
得 z'<x> = F'<u>/(x^2F'<v>)
z'<y> =1/y^2 - F'<u>/F'<v>
更多追问追答
追问
看不懂
求手写
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询