高一题!请数学大神前来解答!22题!

 我来答
zhangsonglin_c
高粉答主

2016-08-03 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.7万
采纳率:83%
帮助的人:7057万
展开全部
22:c=λa+(1-λ)b=λ(a-b)+b
建立坐标系,x轴有a同向,b与a夹角α,a=(1,0)
b=(cosα,sinα)
c=λ(a-b)+b
=λ(1-cosα,-sinα)+(cosα,sinα)
=(λ-λcosα+cosα,(1-λ)sinα)
=(λ+(1-λ)cosα,(1-λ)sinα)
|c|=√{[λ+(1-λ)cosα]²+(1-λ)²sin²α}
=√{λ²+2λ(1-λ)cosα+(1-λ)²cos²α+(1-λ)²sin²α}
=√{λ²+2λ(1-λ)cosα+(1-λ)²}
=√2/2
平方
λ²+2λ(1-λ)cosα+(1-λ)²=1/2
λ²+2λ(1-λ)cosα+1-2λ+λ²=1/2
2λ²-2λ+2λ(1-λ)cosα+1/2=0
cosα=(2λ-2λ²-1/2)/【2λ(1-λ)】
=【2λ(1-λ)-1/2】/【2λ(1-λ)】
=1-1/【4λ(1-λ)】
=1+(1/4)/(λ²-λ)

a-b=(1-cosα,-sinα)
|a-b|=√[(1-cosα)²+sin²α]=√(1-2cosα+cos²α+sin²α)
=√(2-2cosα)
√【2(1-cosα)】
=(√2)√[1-1-(1/4)/(λ²-λ)]
=(√2)√[(1/4)/(λ-λ²)]
λ=-1/2(-1)=1/2时,有极小值:
(√2)√[(1/4)/(1/2-1/4)]
=√2
百度网友224534e
2016-08-03 · 超过22用户采纳过TA的回答
知道答主
回答量:69
采纳率:0%
帮助的人:36.6万
展开全部
答案是2½,求采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式