“常微分方程初值问题的Runge-Kutta方法的研究与实现。” 根据上面题目要求进行C程序设计

 我来答
fin3574
高粉答主

2016-06-02 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134620

向TA提问 私信TA
展开全部
你好,请搜索”Visual C++常微分方程初值问题求解“可以找到相关资料

例如:
三、 使用经典龙格-库塔算法进行高精度求解

  龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。同前几种算法一样,该算法也是构建在数学支持的基础之上的。对于一阶精度的欧拉公式有:

  yi+1=yi+h*K1
  K1=f(xi,yi)

  当用点xi处的斜率近似值K1与右端点xi+1处的斜率K2的算术平均值作为平均斜率K*的近似值,那么就会得到二阶精度的改进欧拉公式:

  yi+1=yi+h*( K1+ K2)/2
  K1=f(xi,yi)
  K2=f(xi+h,yi+h*K1)

 下面的具体程序实现同改进的欧拉算法类似,只需作些必要的改动,下面将该算法的关键部分代码清单列出:

……
for(float x=0;x<0.6;x+=0.1)
{
r=x+expf(-x);
K1=x-y[i]+1; file://求K1
K2=(x+(float)(0.1/2))-(y[i]+K1*(float)(0.1/2))+1; file://求K2
K3=(x+(float)(0.1/2))-(y[i]+K2*(float)(0.1/2))+1; file://求K3
K4=(x+0.1)-(y[i]+K3*0.1)+1; file://求K4
y[i+1]=y[i]+(float)(0.1*(K1+2*K2+2*K3+K4)/6); file://求yi+1
r=fabs(r-y[i]); file://计算误差
str.Format("y[%d]=%f r=%f\r\n",i,y[i],r);
i++;
msg+=str;
}
AfxMessageBox(msg); file://报告计算结果及误差情况
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式