求定积分,答案越详细越好,别把步骤省了,谢谢
1个回答
展开全部
1。(1)
令 y=π/2-x,则x=π/2-y
∫(π/2~0)f(cosx)dx=∫(0~π/2) f(cos(π/2-y))d(π/2-y)
=∫(0~π/2) -f(siny)dy
=-∫(0~π/2) f(siny)dy
=∫(π/2~0)f(siny)dy
=∫(π/2~0)f(sinx)dx
(2)
证明:令x=π-t,则x由0到π,t由π到0,dx=-dt
原式记为I
则I=-(积分区间π到0)∫(π-t)f(sin(π-t)dt
=-(积分区间π到0)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫πf(sin(t)dt-I
所以2I=(积分区间0到π)∫πf(sin(t)dt
即I=(π/2)∫f(sint)dt=(π/2)∫f(sinx)dx
2。
∫[0~π] (x sinx)/(1 + cos²x) dx
= ∫[0~π] (x sinx)/(2 - sin²x) dx,设f(x) = x/(2 - x²),则f(sinx) = sinx/(2 - sin²x)
= ∫[0~π] x f(sinx) dx
= (π/2)∫[0~π] f(sinx) dx
= (π/2)∫[0~π] sinx/(2 - sin²x) dx
= -(π/2)∫[0~π] 1/(1 + cos²x) d(cosx)
= -(π/2)arctan(cosx)_[0~π]
= -(π/2)[arctan(-1) - arctan(1)]
= -(π/2)(-π/4 - π/4)
= π²/4
令 y=π/2-x,则x=π/2-y
∫(π/2~0)f(cosx)dx=∫(0~π/2) f(cos(π/2-y))d(π/2-y)
=∫(0~π/2) -f(siny)dy
=-∫(0~π/2) f(siny)dy
=∫(π/2~0)f(siny)dy
=∫(π/2~0)f(sinx)dx
(2)
证明:令x=π-t,则x由0到π,t由π到0,dx=-dt
原式记为I
则I=-(积分区间π到0)∫(π-t)f(sin(π-t)dt
=-(积分区间π到0)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫πf(sin(t)dt-I
所以2I=(积分区间0到π)∫πf(sin(t)dt
即I=(π/2)∫f(sint)dt=(π/2)∫f(sinx)dx
2。
∫[0~π] (x sinx)/(1 + cos²x) dx
= ∫[0~π] (x sinx)/(2 - sin²x) dx,设f(x) = x/(2 - x²),则f(sinx) = sinx/(2 - sin²x)
= ∫[0~π] x f(sinx) dx
= (π/2)∫[0~π] f(sinx) dx
= (π/2)∫[0~π] sinx/(2 - sin²x) dx
= -(π/2)∫[0~π] 1/(1 + cos²x) d(cosx)
= -(π/2)arctan(cosx)_[0~π]
= -(π/2)[arctan(-1) - arctan(1)]
= -(π/2)(-π/4 - π/4)
= π²/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询