
高等数学,定积分的计算
展开全部
是不定积分。题中应是 a > 0
令 x = sinu
原式 = ∫ acosu acosu du/(asinu)^4
= (1/a^2) ∫ (cotu)^2(cscu)^2du
= - (1/a^2) ∫ (cotu)^2 dcotu
= - [1/(3a^2)] (cotu)^3 + C
= - [1/(3a^2)] (1-x^2)^(3/2)/x^3 + C
令 x = sinu
原式 = ∫ acosu acosu du/(asinu)^4
= (1/a^2) ∫ (cotu)^2(cscu)^2du
= - (1/a^2) ∫ (cotu)^2 dcotu
= - [1/(3a^2)] (cotu)^3 + C
= - [1/(3a^2)] (1-x^2)^(3/2)/x^3 + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询