f(x+1)怎么用泰勒公式展开

 我来答
Dilraba学长
高粉答主

2019-07-18 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411057

向TA提问 私信TA
展开全部

首先x是自变量。并注意到f(x+1)对x求导为f'(x+1)*1=f'(x+1)

所以在x0处的二级局部泰勒展开式为:

Tn(x)=f(x0+1)+f'(x0+1)(x-x0)+(1/2!)f''(x0+1)(x-x0)^2+o(x^2)

注意(x-x0)^n表示n阶无穷小量,所以不能加1

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

扩展资料

泰勒展开式的重要性体现在以下五个方面:

1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。

3、泰勒级数可以用来近似计算函数的值,并估计误差。

4、证明不等式。

5、求待定式的极限。

玲玲的湖
推荐于2017-12-15 · TA获得超过2250个赞
知道小有建树答主
回答量:7261
采纳率:4%
帮助的人:339万
展开全部
首先x是自变量。并注意到f(x+1)对x求导为f'(x+1)*1=f'(x+1)
所以在x0处的二级局部泰勒展开式为:
Tn(x)=f(x0+1)+f'(x0+1)(x-x0)+(1/2!)f''(x0+1)(x-x0)^2+o(x^2)
注意(x-x0)^n表示n阶无穷小量,所以不能加1
追问
在x处的泰勒公式呢
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式