成绩太差,问一个题:假如0<P(B)<1,证明事件A与事件B相互独立的充要条件是P(A|B)=P(A|B的对立事件)。

谢谢,在线=。... 谢谢,在线=。 展开
koco12233
推荐于2017-11-26
知道答主
回答量:9
采纳率:0%
帮助的人:9.4万
展开全部
若独立,则由P(AB)=P(A)P(B)得P(B|A)=P(AB)/P(A)=[P(A)P(B)]/P(A)=P(B)P(B|A*)=P(A*B)/P(A*)=P(A*)P(B)/P(A*)=P(B)故P(B|A)=P(B|A*)若P(B|A)=P(B|A*)则P(AB)/P(A)=P(A*B)/P(A*)=[P(B)-P(AB)]/[1-P(A)]即P(A)P(B)-P(A)P(AB)=P(AB)-P(A)P(AB)P(AB)=P(A)P(B)故A与B相互独立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式