单调性的角度来说,最高次项为奇数的函数,不妨设这个最高次项的系数为正的(如果为负的话,后面的单调性反过来就是了)。
在自变量取值充分大的时候,肯定会急剧递增;在自变量取值充分小的时候,也会急剧递减.所以,函数在负无穷到正无穷的总体趋势,函数值一定是从负无穷递增到正无穷。
因此,必然会存在函数曲线与x轴的交点,所以必然至少有一个实根.复数的角度来说,一个n次代数方程,肯定存在n个复数根(实数视为虚部为0的复数)。
其中不是实数的虚数根,总是和其共轭复数成对出现.也就是说,如果a+bi是一个代数方程的根,那么a-bi也一定是这个方程的根.所以,只要有虚数根,那就只能有双数个。
因此,n个根中至少有一个是实数根。
扩展资料
举例:
设f(x)是一个实系数奇数次多项式,则
x→+∞时,f(x)→+∞,所以存在X1>0,使得f(x1)>0。
x→-∞时,f(x)→-∞,所以存在X2<0,使得f(x2)<0。
f(x)在[X2.X1]上连续,由零点定理,至少存在一点ξ∈(X2,X1),使得f(ξ)=0,即方程f(x)=0至少有一个实数根。
用代数的方法证明:在实数域内分解多项式f(x)时,因为代数方程的复数根是成对出现的,且多项式是奇数次的,所以f(x)至少可以分解出一个一次因式,所以方程至少有一个实数根。