建立区间(0,1)与[-∞,+∞]之间的一一对应 求解答全过程

 我来答
玲玲的湖
2016-10-11 · TA获得超过2250个赞
知道小有建树答主
回答量:7261
采纳率:4%
帮助的人:341万
展开全部
(1)f(x)在区间(0,1)上单调递减;在区间(1,﹢∞)上的单调递增
证明:
(1)设0<x1<x2<1
∵f(x1)-f(x2)=x1+1/x1-x2-1/x2=(x1-x2)+(x2-x1)/(x1x2)=(x1-x2)(x1x2-1)/(x1x2)
∵0<x1<x2<1 ∴x1-x2<0 0<x1x2<1 x1x2-1<0
∴(x1-x2)(x1x2-1)/(x1x2)>0 ∴f(x1)-f(x2)>0 ∴f(x1)>f(x2)
∴f(x)在区间(0,1)上单调递减
(2)设x2>x1>1
∵f(x1)-f(x2)=x1+1/x1-x2-1/x2=(x1-x2)+(x2-x1)/(x1x2)=(x1-x2)(x1x2-1)/(x1x2)
∵x2>x1>1 ∴x1-x2<0 x1x2>1 x1x2-1>0
∴(x1-x2)(x1x2-1)/(x1x2)<0 ∴f(x1)-f(x2)<0 ∴f(x1)<f(x2)
∴f(x)在区间(1,﹢∞)上的单调递增
(2)因为当x∈[½,a]时,f(x)∈[2,5/2],且f(x)在区间(1/2,1)上单调递减,在区间(1,﹢∞)上的单调递增
2≤f(a)≤5/2,即2≤a+1/a≤2,解得1≤a≤2
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
bill8341
高粉答主

2016-10-11 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3700万
展开全部
tan[(x-0.5)pi]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式