m*n矩阵A,m大于n,矩阵A秩小于等于n,为什么
A 共有 n 个列向量,n 个列向量的极大线性无关组的个数最多为 n ,
也就是 A 的秩最多为 n ,因此 秩(A) ≤ n 。
(其实还有 秩(A) ≤ m ,只不过 m > n,因此 秩(A) ≤ n 更精确)
m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。
扩展资料
旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。
旋转矩阵是世界上著名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。
A 共有 n 个列向量,n 个列向量的极大线性无关组的个数最多为 n ,
也就是 A 的秩最多为 n ,因此 秩(A) ≤ n 。
(其实还有 秩(A) ≤ m ,只不过 m > n,因此 秩(A) ≤ n 更精确)
m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。
设A是一组向量,定义A的极大无关组中向量的个数为A的秩。
在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。
扩展资料:
矩阵的乘积的秩Rab<=min{Ra,Rb};
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
证明:
AB与n阶单位矩阵En构造分块矩阵
|AB O|
|O En|
A分乘下面两块矩阵加到上面两块矩阵,有
|AB A|
|0 En|
右边两块矩阵分乘-B加到左边两块矩阵,有
|0 A |
|-B En|
所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)
即r(A)+r(B)-n<=r(AB)
注:这里的n指的是A的列数。这里假定A是m×n matrix。
特别的:A:m*n,B:n*s,AB=0 -> r(A)+r(B)<=n
推荐于2017-11-23 · 知道合伙人教育行家
也就是 A 的秩最多为 n ,因此 秩(A) ≤ n 。
(其实还有 秩(A) ≤ m ,只不过 m > n,因此 秩(A) ≤ n 更精确)