求此题极限
2个回答
展开全部
解:
lim [√(2x+1)-3]/[√(x-2)-√2]
x→4
=lim [√(2x+1)-3][√(2x+1)+3][√(x-2)+√2] / [√(x-2)-√2][√(x-2)+√2][√(2x+1)+3]
x→4
=lim [(2x+1)-9][√(x-2)+√2] / [(x-2)-2][√(2x+1)+3]
x→4
=lim 2(x-4)[√(x-2)+√2] / [(x-4)[√(2x+1)+3]
x→4
=lim 2[√(x-2)+√2] / [√(2x+1)+3]
x→4
=2[√(4-2)+√2] / [√(2·4+1)+3]
=2(√2+√2)/(3+3)
=2√2/3
lim [√(2x+1)-3]/[√(x-2)-√2]
x→4
=lim [√(2x+1)-3][√(2x+1)+3][√(x-2)+√2] / [√(x-2)-√2][√(x-2)+√2][√(2x+1)+3]
x→4
=lim [(2x+1)-9][√(x-2)+√2] / [(x-2)-2][√(2x+1)+3]
x→4
=lim 2(x-4)[√(x-2)+√2] / [(x-4)[√(2x+1)+3]
x→4
=lim 2[√(x-2)+√2] / [√(2x+1)+3]
x→4
=2[√(4-2)+√2] / [√(2·4+1)+3]
=2(√2+√2)/(3+3)
=2√2/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询