求极限 lim(x→1) sin(x-1)/(x^2-1)
4个回答
展开全部
求极限 lim(x→1) sin(x-1)/(x^2-1)
解:
lim(x→1)sin(x-1)/(x²-1)
=lim(x→1)sin(x-1)/(x+1)(x-1)
=lim(x→1)[1/(x+1)*sin(x-1)/(x-1)]
=(1/2)*1
=1/2
解:
lim(x→1)sin(x-1)/(x²-1)
=lim(x→1)sin(x-1)/(x+1)(x-1)
=lim(x→1)[1/(x+1)*sin(x-1)/(x-1)]
=(1/2)*1
=1/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令a=x-1
则a→0
且x²-1=(a+1)²-1=a(a+2)
所以原式=lim(a→0)sina/a(a+2)
=lim(a→0)sina/a*lim(a→0)1/(a+2)
=1*1/(0+2)
=1/2
则a→0
且x²-1=(a+1)²-1=a(a+2)
所以原式=lim(a→0)sina/a(a+2)
=lim(a→0)sina/a*lim(a→0)1/(a+2)
=1*1/(0+2)
=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询