中值定理证明

中值定理证明三道中值定理证明题,请大神帮看,最好能写一下过程,谢谢... 中值定理证明三道中值定理证明题,请大神帮看,最好能写一下过程,谢谢 展开
 我来答
  • 你的回答被采纳后将获得:
  • 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
水瓶暗杀爱迪生
2017-07-15 · 超过36用户采纳过TA的回答
知道答主
回答量:55
采纳率:0%
帮助的人:22.6万
展开全部
(1)证:假设对于任意x∈[0,1],f(x)﹤0,
那么f(x)/x﹤0,由保号性知lim(x→0)f(x)/x﹤0,矛盾,
假设对于任意x∈[0,1],f(x)﹥0,
那么f(x)/(x-1)﹤0,由保号性知lim(x→0)f(x)/x﹤0,矛盾,
∴存在ζ1,ζ2∈(0,1)使f(ζ1)﹥0,f(ζ2)﹤0,
又∵f(x)在ζ1与ζ2之间连续,
∴由零点定理知存在ζ在ζ1与ζ2之间使f(ζ)=0,
∴存在ζ∈(0,1)使f(ζ)=0.
(2)证:f(0)=f(1)=0,f′(0)=1,f′(1)=2,
设g(x)=f(x)/e^x,∴g(x)在[0,1]上可导,g(0)=g(1)=0,
∴由罗尔中值定理知存在η1∈(0,1)使g′(η1)=0,
即(f′(η1)·e^η1-f(η1)·e^η1)/e^(2η1)=0,
∴f′(η1)·e^η1-f(η1)·e^η1=0,
设h(x)=f′(x)·e^x-f(x)·e^x,
∴h(0)=1,h(η1)=0,h(1)=2e,h(x)在[0,1]上连续,
∴存在η2∈(η1,1)使h(η2)=1,∴h(0)=h(η2),
又∵h(x)在[0,η2]上可导,
∴由罗尔中值定理知存在η∈(0,η2)使h′(η)=0,
即f″(η)·e^η+f′(η)·e^η-f′(η)·e^η-f(η)·e^η=0,
∴f″(η)·e^η-f(η)·e^η=0,∴f″(η)=f(η),
∴存在η∈(0,1)使f″(η)=f(η).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
串串的软软
2017-07-15 · TA获得超过2927个赞
知道大有可为答主
回答量:1366
采纳率:85%
帮助的人:620万
展开全部

更多追问追答
追问
哇,谢谢大神😊
我想问一下,那个第一题,根的个数,是怎么得出结论的?
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式