哪些是常微分方程
4个回答
2017-05-16 · 让每个孩子都能正常讲话,是我们最大的心愿
阳光语言矫正学校
1992年开始语音病理学研究,北京、上海 、长春设有校区,功能性构音障碍、腭裂语音障碍、听力言语障碍、语言发育迟缓、口吃等多个语音矫正和训练项目,对大舌头 口吃等各种语言障碍有数万例矫正经验
向TA提问
关注
展开全部
常微分方程,学过中学数学的人对于方程是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。
定义1:凡含有参数,未知函数和未知函数导数 (或微分) 的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知数是多元函数的微分方程称作偏微分方程。微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶。定义式如下:
定义2:任何代入微分方程后使其成为恒等式的函数,都叫做该方程的解.若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该方程的通解(或一般解).当通解中的各任意常数都取特定值时所得到的解,称为方程的特解。
一般地说,n 阶微分方程的解含有 n个任意常数。也就是说,微分方程的解中含有任意常数的个数和方程的阶数相同,这种解叫做微分方程的通解。通解构成一个函数族。
如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。
实例
编辑
下列方程都是微分方程 (其中 y, v均为未知函数).
(1) y'= kx, k 为常数;
(2) ( y - 2xy) dx + x² dy = 0;
(3) mv'(t) = mg - kv(t);
定义1:凡含有参数,未知函数和未知函数导数 (或微分) 的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知数是多元函数的微分方程称作偏微分方程。微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶。定义式如下:
定义2:任何代入微分方程后使其成为恒等式的函数,都叫做该方程的解.若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该方程的通解(或一般解).当通解中的各任意常数都取特定值时所得到的解,称为方程的特解。
一般地说,n 阶微分方程的解含有 n个任意常数。也就是说,微分方程的解中含有任意常数的个数和方程的阶数相同,这种解叫做微分方程的通解。通解构成一个函数族。
如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。
实例
编辑
下列方程都是微分方程 (其中 y, v均为未知函数).
(1) y'= kx, k 为常数;
(2) ( y - 2xy) dx + x² dy = 0;
(3) mv'(t) = mg - kv(t);
展开全部
解析:
不会。
早忘光了。
不会。
早忘光了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第二项、第四项,B和D
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
BD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询