第七题过程
展开全部
f(x) = 1/[x(x-1)]
= 1/(x-1) -1/x
f'(x)= -1/(x-1)^2 + 1/x^2
f^(n)(x) = (-1)^n. n! [ 1/(x-1)^(n+1) - 1/x^(n+1) ]
f^(n)(2)/n! = (-1)^n [ 1 - 1/2^(n+1) ]
f(x) = f(2) + [f'(2)/1!](x-2)+...+...+[f^(n)(2)/n!] (x-2)^n +...
= 1/2 - (3/4)(x-2)+....+(-1)^n [ 1 - 1/2^(n+1) ] (x-2)^n +....
= 1/(x-1) -1/x
f'(x)= -1/(x-1)^2 + 1/x^2
f^(n)(x) = (-1)^n. n! [ 1/(x-1)^(n+1) - 1/x^(n+1) ]
f^(n)(2)/n! = (-1)^n [ 1 - 1/2^(n+1) ]
f(x) = f(2) + [f'(2)/1!](x-2)+...+...+[f^(n)(2)/n!] (x-2)^n +...
= 1/2 - (3/4)(x-2)+....+(-1)^n [ 1 - 1/2^(n+1) ] (x-2)^n +....
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询