3个回答
展开全部
十字相乘法是因式分解中12种方法之一,另外十一种分别是:1分组分解法 2.拆添项法 3.配方法 4.因式定理(公式法)5.换元法 6.主元法 7.特殊值法8.待定系数法 9.双十字相乘法 10.二次多项式 11.提公因式法
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字分解法能用于二次三项式的分解因式(不一定是整数范围内)。对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
==================
a²+a-42
首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a + ?)×(a -?),
然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,(-42)是-6×7 或者6×(-7)也可以分解成 -21×2 或者21×(-2)。
首先,21和2无论正负,通过任意加减后都不可能是1,只可能是7或者6,所以排除后者。
然后,再确定是-7×6还是7×(-6)。
﹣7﹢6=﹣1,7﹣6=1,因为一次项系数为1,所以确定是7×﹣6。
所以a²+a-42就被分解成为(a+7)×(a-6),这就是通俗的十字分解法分解因式。
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字分解法能用于二次三项式的分解因式(不一定是整数范围内)。对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
==================
a²+a-42
首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a + ?)×(a -?),
然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,(-42)是-6×7 或者6×(-7)也可以分解成 -21×2 或者21×(-2)。
首先,21和2无论正负,通过任意加减后都不可能是1,只可能是7或者6,所以排除后者。
然后,再确定是-7×6还是7×(-6)。
﹣7﹢6=﹣1,7﹣6=1,因为一次项系数为1,所以确定是7×﹣6。
所以a²+a-42就被分解成为(a+7)×(a-6),这就是通俗的十字分解法分解因式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询