已知公差大于0的等差数列{an}的前n项和为sn,且满足a1a4=117,a2+a5=22.

1求通项an2若数列{bn}为等差数列,且bn=sn/(n+c),求非0常数c3求在2的条件下f(n)=bn/[(n+36)bn+1]的最大值... 1 求通项an

2 若数列{bn}为等差数列,且bn=sn/(n+c),求非0常数c

3 求在2的条件下f(n)=bn/[(n+36)bn+1]的最大值
展开
海的那边dy
2008-10-13 · TA获得超过1294个赞
知道小有建树答主
回答量:81
采纳率:0%
帮助的人:58.2万
展开全部
1、假设等差数列第一项为a1,公差为d
a1*a4=a1*(a1+3d)=17
a2+a5=a1+d+a1+4d=22
以上两项组成方程组 即可解出a1和公差为d
代入an=a1+(n-1)d 即可

2、由等差数列前n项和公式得出sn
代入bn - b(n-1)为固定值即可
此生此世我来过
2013-03-19
知道答主
回答量:1
采纳率:0%
帮助的人:1519
展开全部
因为an是公差d>0的等差数列,
所以 a2+a5=22=a3+a4
a3*a4=117
所以解得a3=9,a4=13
所以公差d=a4-a3=13-9=4
所以a1=1
1)、an=a1+(n-1)*d=1+(n-1)*4=4n-3
2)、Sn=(a1+an)*n/2=(1+4n-3)*n/2=n(2n-1)
所以bn=n(2n-1)/(n+c)是等差数列,且c≠0
则n没有二次项,所以c=-0.5
3、bn=2n
f(n)=2n/〔(n+36)*2(n+1)〕=1/(n+37+36/n)≤1/(37+2√36)=1/7
即当n=36/n,得n=6时,f(n)max=f(6)=1/7
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式