如图,求解数学参数方程,微分方程的解是什么
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
2个回答
展开全部
答案是A。
根据线性方程的叠加原理,原非齐次线性方程的特解是y''+y=x^2+1的特解与y''+y=sinx的特解之和。
因为0不是特征方程的根,所以y''+y=x^2+1的特解设为ax^2+bx+c。
因为±i是特征方程的单根,所以y''+y=sinx的特解设为x(Acosx+Bsinx)。
所以,原非齐次线性方程的特解设为ax^2+bx+c+x(Acosx+Bsinx)。
根据线性方程的叠加原理,原非齐次线性方程的特解是y''+y=x^2+1的特解与y''+y=sinx的特解之和。
因为0不是特征方程的根,所以y''+y=x^2+1的特解设为ax^2+bx+c。
因为±i是特征方程的单根,所以y''+y=sinx的特解设为x(Acosx+Bsinx)。
所以,原非齐次线性方程的特解设为ax^2+bx+c+x(Acosx+Bsinx)。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |