这个数学题怎么做

这个数学题怎么做要过程... 这个数学题怎么做要过程 展开
 我来答
宋餐晋虎1
2018-04-30 · 超过17用户采纳过TA的回答
知道答主
回答量:52
采纳率:100%
帮助的人:4.3万
展开全部
解答:
(1)将A(32,0)、B(1,22)代入抛物线解析式y=825x2+bx+c,得:
825×94+32b+c=0825+b+c=22,
解得:b=-82c=4225.
∴y=825x2-82x+4225.
(2)当∠BDA=∠DAC时,BD∥x轴.
∵B(1,22),
当y=22时,22=825x2-82x+4225,
解得:x=1或x=4,
∴D(4,22).
(3)①四边形OAEB是平行四边形.
理由如下:抛物线的对称轴是x=52,
∴BE=52-1=32.
∵A(32,0),
∴OA=BE=32.
又∵BE∥OA,
∴四边形OAEB是平行四边形.
②∵O(0,0),B(1,22),F为OB的中点,∴F(12,2).
过点F作FN⊥直线BD于点N,则FN=22-2=2,BN=1-12=12.
(I)当点M位于点B右侧时.
在直线BD上点B左侧取一点G,使BG=BF=32,连接FG,则GN=BG-BN=1,
在Rt△FNG中,由勾股定理得:FG=GN2+FN2=3.
∵BG=BF,∴∠BGF=∠BFG.
又∵∠FBM=∠BGF+∠BFG=2∠BMF,
∴∠BFG=∠BMF,又∵∠MGF=∠MGF,
∴△GFB∽△GMF,
∴GMGF=GFGB,即32+BM3=332,
∴BM=12;
梵否77
2018-07-24 · TA获得超过1071个赞
知道小有建树答主
回答量:111
采纳率:100%
帮助的人:10.8万
展开全部
【题目】
已知关于x的不等式x1nx−ax+a<0存在唯一的整数解,则实数a的取值范围是()

A. (2ln2,32ln3]
B. (ln2,ln3]
C. [ln2,+∞)
D. (−∞,2ln3]
【解析】
利用特殊值回代验证法求解即可.
【解答】
关于x的不等式x1nx−ax+a<0存在唯一的整数解,可知x>0,
当a=ln3时,不等式化简x1nx−xln3+ln3<0,
当x>3时,x(lnx−ln3)+ln3>0恒成立,
x=1,不等式为0−ln3+ln3<0不成立,
x=2,不等式21n2−2ln3+ln3<0,即ln4−ln3<0,不等式不成立,
x=3,不等式ln3<0不成立,
所以a=ln3不正确,排除B,C,D.
故选:A.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式