笔算开立方根的方法有哪些?
1个回答
展开全部
原理:
(10a+b)^3 = 1000a^3+300a^2*b+30a*b^2+b^3 = 1000a^3+b[300a^2+b(30a+b)]
如果每次计算后都能减掉1000a^3的话,那么剩下的任务就是找到最大的整数b',使b'[300a^2+b'(30a+b')]<=b[300a^2+b(30a+b)]。
于是,我就设计了一个版式。下面就开始使用这个版式来检验开立方笔算法。
例如:147^3=3176523
一开始,如下图所示,将3176523从个位开始3位3位分开。(3'176'523)
第一步,我们知道,1^3 < 3 < 2^3,所以,第一位应该填1。
1^3 = 1,3 - 1 = 2,余2,再拖三位,一共是2176。
接下来这一步就比较复杂了。因为我水平有限,我现在还不能把它改造得比较好。
依照“b[300a^2+b(30a+b)]”,所以:
1^2*300=300,1*30=30,如图上所写。
第二位就填4,所以上图3个空位都填4。
然后(34*4+300)*4=1744,2176-1744=432,再拖三位得432523。
然后就照上面一样,
14^2*300=58800,14*30=420,如上图所写。
第三位就填7,所以上图下边3个空位都填7。
然后(427*7+58800)*7=432523,432523-432523=0,到此开立方结束。
在我以后的一些实践中,发现越往后开,300*a^2与b(30a+b)的差距就越大,寻找b的工作就越容易,因为结果中有一项是300*a^2*b。
(10a+b)^3 = 1000a^3+300a^2*b+30a*b^2+b^3 = 1000a^3+b[300a^2+b(30a+b)]
如果每次计算后都能减掉1000a^3的话,那么剩下的任务就是找到最大的整数b',使b'[300a^2+b'(30a+b')]<=b[300a^2+b(30a+b)]。
于是,我就设计了一个版式。下面就开始使用这个版式来检验开立方笔算法。
例如:147^3=3176523
一开始,如下图所示,将3176523从个位开始3位3位分开。(3'176'523)
第一步,我们知道,1^3 < 3 < 2^3,所以,第一位应该填1。
1^3 = 1,3 - 1 = 2,余2,再拖三位,一共是2176。
接下来这一步就比较复杂了。因为我水平有限,我现在还不能把它改造得比较好。
依照“b[300a^2+b(30a+b)]”,所以:
1^2*300=300,1*30=30,如图上所写。
第二位就填4,所以上图3个空位都填4。
然后(34*4+300)*4=1744,2176-1744=432,再拖三位得432523。
然后就照上面一样,
14^2*300=58800,14*30=420,如上图所写。
第三位就填7,所以上图下边3个空位都填7。
然后(427*7+58800)*7=432523,432523-432523=0,到此开立方结束。
在我以后的一些实践中,发现越往后开,300*a^2与b(30a+b)的差距就越大,寻找b的工作就越容易,因为结果中有一项是300*a^2*b。
AiPPT
2024-12-03 广告
2024-12-03 广告
作为北京饼干科技有限公司的一员,对于市场上各类工具都有所了解。就AiPPT而言,它确实为用户提供了便捷高效的PPT制作体验。通过智能化的辅助功能,用户能够快速生成专业且富有创意的演示文稿,极大地节省了时间和精力。无论是对于个人用户还是企业团...
点击进入详情页
本回答由AiPPT提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询