这是因为每个矩阵都可以通过初等变换,得到唯一的标准型与之对应,而标准型中的非零行数就是秩。不管通过初等行变换来求行秩,还是初等列变换求列秩,最终都可以化成这个唯一的标准型,且行秩(或列秩),就等于秩。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
扩展资料:
设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
矩阵的行秩,列秩,秩都相等。初等变换不改变矩阵的秩。矩阵的乘积的秩Rab<=min{Ra,Rb};
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
令A是一个m×n矩阵,定义rk(A)为A的列秩,A为A的共轭转置或称施密特转置。首先可知AAx= 0当且仅当Ax= 0。
AAx= 0 ⇒xAAx= 0 ⇒(Ax)(Ax)= 0 ⇒ ‖Ax‖= 0 ⇒ Ax = 0,其中‖·‖是欧氏范数。这说明A的零空间与AA的零空间相同。由秩-零化度定理,可得rk(A) = rk(AA)。AA的每一个列向量是A的列向量的线性组合。所以AA的列空间是A的列空间的子空间,从而rk(AA) ≤ rk(A)。
即: rk(A) = rk(AA) ≤ rk(A)。 应用这一结果于A可或得不等式: since (A)=A,可写作rk(A) ≤ rk((A)) = rk(A),这证明了rk(A) = rk(A),证毕。
参考资料来源:百度百科——矩阵的秩
参考资料来源:百度百科——列秩
因为每个矩阵都可以通过初等变换,得到唯一的标准型与之对应,而标准型中的非零行数就是秩。不管通过初等行变换来求行秩,还是初等列变换求列秩,最终都可以化成这个唯一的标准型,且行秩(或列秩),就等于秩。
矩阵的行秩与列秩相等,是线性代数基本定理的重要组成部分. 其基本证明思路是,矩阵可以看作线性映射的变换矩阵,列秩为像空间的维度,行秩为非零原像空间的维度,因此列秩与行秩相等,即像空间的维度与非零原像空间的维度相等(这里的非零原像空间是指约去了零空间后的商空间:原像空间)。这从矩阵的奇异值分解就可以看出来。
扩展资料
列秩应用
计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组只要有一个解。在这种情况下,它有精确的一个解,如果它的秩等于方程的数目。如果增广矩阵的秩大于系数矩阵的秩,则通解有k个自由参量,这里的k是在方程的数目和秩的差。否则方程组是不一致的。
在控制论中,矩阵的秩可以用来确定线性系统是否为可控制的,或可观察的。
参考资料来源:百度百科——矩阵的秩
参考资料来源:百度百科——列秩
而标准型中的非零行数就是秩。
不管通过初等行变换来求行秩,还是初等列变换求列秩,最终都可以化成这个唯一的标准型,且行秩(或列秩),就等于秩。
什么样的标准型?
标准型是指阶梯型?
2018-05-30 · 知道合伙人教育行家
-21/5 x 2+24/5 x3 =6
-21/5 x 7+24/5 x8 =9
矩阵的秩的定义:存在K阶子式不为0,对任意K+1阶子式均为0,则k即为矩阵的秩。
向量组的秩的定义:向量组的极大线性无关组所包含向量的个数,称为向量组的秩。
其次再弄清楚3个定理:
1,矩阵A的行列式不为0的充要条件是A的行(列)向量线性无关
2,无关组加分量仍无关
3, r个n维列向量组线性无关的充要条件是这r个n维列向量组所构成的矩阵至少存在一个r阶子式不为0
好了,简略证明过程开始,我先证“矩阵的秩等于列向量组的秩”。假设n阶矩阵的秩为r,其列向量组的秩为s。(我们的目标:就是证明r=s)
一方面,矩阵的秩为r,即为其有K阶子式不为0(矩阵秩的定义),则该K阶子式的列向量线性无关(定理1),则其k阶子式所在矩阵的列向量必线性无关(定理2),则由向量组的秩的定义可知r≤s。
另一方面,列向量组的秩为s,由定理3知,必有一个s阶子式不为0,故由矩阵的秩的定义可知s≤r。
联立即得,r=s!
同理可证,矩阵的秩等于行向量组的秩!
转自:http://zhidao.baidu.com/question/1045507764985928339.html?qbl=relate_question_1&word=%CE%AA%CA%B2%C3%B4%BE%D8%D5%F3%B5%C4%D6%C8%B5%C8%D3%DA%D0%D0%D6%C8%D2%B2%B5%C8%D3%DA%C1%D0%D6%C8
@∮一丛萱草∮