1个回答
展开全部
S(x) = x + x^3/3 + x^5/5 + ......
S'(x) = 1 + x^2 + x^4 + ... = 1/(1-x^2), 0≤ x^2 <1, -1<x<1.
S(x) = ∫<0, x> S'(t)dt + S(0) = ∫<0, x> dt/(1-t^2) + 0
= ∫<0, x> (1/2)[1/(1-t)+1/(1+t)]dt
= (1/2) ln[(1+x)/(1-x)], -1<x<1.
所求常数项级数即 S(1/2) = (1/2)ln3
S'(x) = 1 + x^2 + x^4 + ... = 1/(1-x^2), 0≤ x^2 <1, -1<x<1.
S(x) = ∫<0, x> S'(t)dt + S(0) = ∫<0, x> dt/(1-t^2) + 0
= ∫<0, x> (1/2)[1/(1-t)+1/(1+t)]dt
= (1/2) ln[(1+x)/(1-x)], -1<x<1.
所求常数项级数即 S(1/2) = (1/2)ln3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询