1个回答
展开全部
回答如下:
1-(1)题,说法正确。
f’(x0)=0说明f(x)在x0处连续且可导(导数存在)。而f’(x)是表示函数f(x)增长的变化率函数,当f’(x0)=0则表示f(x0)在x0处的增长变化为零,即f(x)在x0处有峰值(最大,或最小),是个极值点。
1-(2)题,说法正确。
所谓f(x)的驻点就是f’(x)=0的点。而还有一种函数的极值点,比如三角形曲线的顶点,一阶导数不存在。所以上半句成立。
而反之,一个函数f(x)在某点不存在的原因也可能是函数在此点间断,不连续,不一定是极值,所以反之不成立。
2-(1)f=x^3 - 3x^2 - 9x + 1;
则: f'=3(x^2 - 2x - 3); f" = 6(x - 1 )
由 f'=0, 即 x^2 - 2x - 3=0 求极值点; --> (x + 1)(x - 3)=0; 两个极值点 x=-1, 和 x=3
在-∞ < x ≦ -1 区间, 以及 3 ≦ x ≦ ∞ 区间, f' ≧ 0 ; f单调增;
在 -1 < x < 3 区间, f'<0 ; f单调减;
拐点 f"= 0, x=1;
2-(2)f=x-lnx
则:f'=1-1/x, f"=1/(x^2)
由f'=0, 即1-1/x = 0 求极值点; --> x=1
∵ lnx的定义区间是(0, ∞) , x>0
∴ 在0<x<1的区间, f' < 0 单调减; 在 1 ≦ x < ∞, f'≧0 单调增;
∵ f" = 1/(x^2) ≠0,∴ 不存在拐点
1-(1)题,说法正确。
f’(x0)=0说明f(x)在x0处连续且可导(导数存在)。而f’(x)是表示函数f(x)增长的变化率函数,当f’(x0)=0则表示f(x0)在x0处的增长变化为零,即f(x)在x0处有峰值(最大,或最小),是个极值点。
1-(2)题,说法正确。
所谓f(x)的驻点就是f’(x)=0的点。而还有一种函数的极值点,比如三角形曲线的顶点,一阶导数不存在。所以上半句成立。
而反之,一个函数f(x)在某点不存在的原因也可能是函数在此点间断,不连续,不一定是极值,所以反之不成立。
2-(1)f=x^3 - 3x^2 - 9x + 1;
则: f'=3(x^2 - 2x - 3); f" = 6(x - 1 )
由 f'=0, 即 x^2 - 2x - 3=0 求极值点; --> (x + 1)(x - 3)=0; 两个极值点 x=-1, 和 x=3
在-∞ < x ≦ -1 区间, 以及 3 ≦ x ≦ ∞ 区间, f' ≧ 0 ; f单调增;
在 -1 < x < 3 区间, f'<0 ; f单调减;
拐点 f"= 0, x=1;
2-(2)f=x-lnx
则:f'=1-1/x, f"=1/(x^2)
由f'=0, 即1-1/x = 0 求极值点; --> x=1
∵ lnx的定义区间是(0, ∞) , x>0
∴ 在0<x<1的区间, f' < 0 单调减; 在 1 ≦ x < ∞, f'≧0 单调增;
∵ f" = 1/(x^2) ≠0,∴ 不存在拐点
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询