2个回答
展开全部
lim (x²+x-2)/(x³-x²+x-1)
x→-1
=lim (x-1)(x+2)/[x²(x-1)+(x-1)]
x→-1
=lim (x-1)(x+2)/[(x-1)(x²+1)]
x→-1
=lim (x+2)/(x²+1)
x→-1
=(-1+2)/[(-1)²+1]
=½
lim (x²+x-2)/(x³-x²+x-1)
x→1
=lim (x-1)(x+2)/[x²(x-1)+(x-1)]
x→1
=lim (x-1)(x+2)/[(x-1)(x²+1)]
x→1
=lim (x+2)/(x²+1)
x→1
=(1+2)/(1²+1)
=3/2
x→-1
=lim (x-1)(x+2)/[x²(x-1)+(x-1)]
x→-1
=lim (x-1)(x+2)/[(x-1)(x²+1)]
x→-1
=lim (x+2)/(x²+1)
x→-1
=(-1+2)/[(-1)²+1]
=½
lim (x²+x-2)/(x³-x²+x-1)
x→1
=lim (x-1)(x+2)/[x²(x-1)+(x-1)]
x→1
=lim (x-1)(x+2)/[(x-1)(x²+1)]
x→1
=lim (x+2)/(x²+1)
x→1
=(1+2)/(1²+1)
=3/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询