设f(x)在x=a处可导,且f(a)不等于0,则|f(x)|在a处是否可导?

看了参考答案的推论是可导的,但是不明白是为什么,我举了一个反例比如:f(x)=x+1,显然f(0)=1即不等于0,显然在0处也是可导的,但是|f(x)|=|x|+1,显然... 看了参考答案的推论是可导的,但是不明白是为什么,我举了一个反例比如:f(x)=x+1,显然f(0)=1即不等于0,显然在0处也是可导的,但是|f(x)|=|x|+1,显然在0处不可导,是不是我在哪里想错了? 展开
 我来答
望涵涤Gp
2019-08-27 · TA获得超过2528个赞
知道小有建树答主
回答量:2112
采纳率:82%
帮助的人:99.4万
展开全部
记 g(x) = lnf(x),则
g.e. = e^lim(n→inf.)[lnf(a+1/n) - lnf(a)]/(1/n)
= e^lim(n→inf.)[g(a+1/n) - g(a)]/(1/n)
= e^g'(a)
   = e^[f'(a)/f(a)]。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式