已知方程组 {x+y+z=0 x·y·z=1 求d2y/dx2?

d2y/dx2即d[(yz-xy)/(xy-xz)]/dx,求计算及结果,谢谢!... d2y/dx2 即d[(yz-xy)/(xy-xz)]/dx,求计算及结果,谢谢! 展开
 我来答
toongci
2020-03-26 · TA获得超过1193个赞
知道小有建树答主
回答量:3629
采纳率:49%
帮助的人:429万
展开全部
x+y+z=0 ①
xyz=1 ②
由①②可以确定y=y(x),z=z(x)
①式两边对x求导得1+dy/dx+dz/dx=0 ③
②式两边对x求导得yz+x(ydz/dx+zdy/dx)=0
即yz+xydz/dx+xzdy/dx=0 ④
由③④得
dz/dx=(xz-yz)/(xy-xz) ⑤
dy/dx=(xy-yz)/(xz-xy) ⑥
d²y/dx²=[(y+xdy/dx-ydz/dx-zdy/dx)(xz-xy)-(xy-yz)(z+xdz/dx-y-xdy/dx)]/(xz-xy)² ⑦
将⑤⑥代入⑦再结合①式,化简得
d²y/dx²=[y(xz-xy)(x²+y²+z²)-x(xy-yz)(x²+y²+z²)]/(xz-xy)³
=(xyz-xy²-x²y+xyz)(x²+y²+z²)/(xz-xy)³
=[2xyz-xy(y+x)](x²+y²+z²)/(xz-xy)³
=3xyz(x²+y²+z²)/(xz-xy)³
=3(x²+y²+z²)/(xz-xy)³


(y+xdy/dx-ydz/dx-zdy/dx)(xz-xy)
=y(xz-xy)+x(xy-yz)-y(yz-xz)-z(xy-yz)
=xyz-xy²+x²y-xyz-y²z+xyz-xyz+yz²
=-xy²+x²y-y²z+yz²
=y(x²+z²)-y²(x+z)
=y(x²+z²)+y³
=y(x²+y²+z²)
(xy-yz)(z+xdz/dx-y-xdy/dx)
=(xy-yz)[z+x(xz-yz)/(xy-xz)-y-x(xy-yz)/(xz-xy)]
=(xy-yz)[z(xz-xy)-x(xz-yz)-y(xz-xy)-x(xy-yz)]/(xz-xy)
=(xy-yz)(xz²-xyz-x²z+xyz-xyz+xy²-x²y+xyz)/(xz-xy)
=(xy-yz)(xz²-x²z+xy²-x²y)/(xz-xy)
=(xy-yz)[x(y²+z²)-x²(y+z)]/(xz-xy)
=(xy-yz)[x(y²+z²)+x³]/(xz-xy)
=(xy-yz)[x(x²+y²+z²)]/(xz-xy)
=x(xy-yz)(x²+y²+z²)/(xz-xy)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式