三角函数求反函数
展开全部
三角函数的反函数如下:
反三角函数是一种基本初等函数,它是反正弦、反余弦、反正切、反余切、反正割、反余割这些函数的统称。各自表示其正弦,余弦、正切、余切、正割,余割为x的角。三角函数的三角函数是个多值函数,因为它不满足一个自变量对应一个函数的要求,其图像与其原函数关于函数y=x对称,欧拉提出反三角函数的概念,并且首先是用了“arc+函数名”的形式来表示反三角函数。
反三角函数是一种基本初等函数,它是反正弦、反余弦、反正切、反余切、反正割、反余割这些函数的统称。各自表示其正弦,余弦、正切、余切、正割,余割为x的角。三角函数的三角函数是个多值函数,因为它不满足一个自变量对应一个函数的要求,其图像与其原函数关于函数y=x对称,欧拉提出反三角函数的概念,并且首先是用了“arc+函数名”的形式来表示反三角函数。
展开全部
(1)。求y=2sin3x的反函数
解:直接函数y=2sin3x的定义域应限制为:-π/2≦3x≦π/2,即-π/6≦x≦π/6才会有反函数。
此时直接函数的值域为:-1≦y≦1;
当-π/6≦x≦π/6时由sin3x=y/2;得3x=arcsin(y/2);即 x=(1/3)arcsin(y/2);
交换x,y,即得反函数:y=(1/3)arcsin(x/2);定义域:由-1≦x/2≦1,得定义域为:-2≦x≦2;
值域为:-π/6≦y≦π/6.
(2)。求 y=sin(3x/2)的反函数
解:直接函数y=sin(3x/2)的定义域应限制为:-π/2≦3x/2≦π/2,即-π/3≦x≦π/3才会有反函数;
此时直接函数的值域为:-1≦y≦1;
当-π/3≦x≦π/3时有y=sin(3x/2)得3x/2=arcsiny;即x=(2/3)arcsiny;交换x,y得反函数:
y=(2/3)arcsinx;定义域:-1≦x≦1;值域:-π/3≦y≦π/3;
解:直接函数y=2sin3x的定义域应限制为:-π/2≦3x≦π/2,即-π/6≦x≦π/6才会有反函数。
此时直接函数的值域为:-1≦y≦1;
当-π/6≦x≦π/6时由sin3x=y/2;得3x=arcsin(y/2);即 x=(1/3)arcsin(y/2);
交换x,y,即得反函数:y=(1/3)arcsin(x/2);定义域:由-1≦x/2≦1,得定义域为:-2≦x≦2;
值域为:-π/6≦y≦π/6.
(2)。求 y=sin(3x/2)的反函数
解:直接函数y=sin(3x/2)的定义域应限制为:-π/2≦3x/2≦π/2,即-π/3≦x≦π/3才会有反函数;
此时直接函数的值域为:-1≦y≦1;
当-π/3≦x≦π/3时有y=sin(3x/2)得3x/2=arcsiny;即x=(2/3)arcsiny;交换x,y得反函数:
y=(2/3)arcsinx;定义域:-1≦x≦1;值域:-π/3≦y≦π/3;
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询