高等数学,用介值定理或零点定理,证明如图所示题目?

 我来答
西域牛仔王4672747
2019-12-11 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30557 获赞数:146230
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
不妨设 f'(a)>0,f'(b)>0(都为负时同理可证),
则存在 δ1>0,δ2>0,使得当 x∈(a,a+δ1) 时,[f(x) - f(a)]/(x-a)>0,
当 x∈(b-δ2,b) 时,[f(b)-f(x)]/(b-x)>0,
因此存在 d∈(a,a+δ1) 使 f(d)>f(a)=0,存在 e∈(b-δ2,b) 使 f(e)<f(b)=0,
由介值定理,存在 c∈(d,e)包含于(a,b) 使 f(c)=0。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
溜到被人舔

2019-12-11 · TA获得超过6.8万个赞
知道顶级答主
回答量:8.2万
采纳率:96%
帮助的人:2810万
展开全部
介值定理:又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明,如果定义域为[a,b]的连续函数f,也就是说,介值定理是在连续函数的一个区间内的函数值肯定介于最大值和最小值之间。

零点定理:如果函数y= f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y= f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)= 0的根。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
s愤怒的肉肉
2019-12-11 · 贡献了超过200个回答
知道答主
回答量:200
采纳率:0%
帮助的人:13.7万
展开全部
看不到题。。。。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式