2个回答
展开全部
f(x)
=3x-lnx ; 0<x<1
=3x+lnx ; x≥1
f(1+)=f(1) = lim(x->1) (3x+lnx) = 3
f(1-)= lim(x->1-) (3x-lnx) = 3
x=1, f(x) 连续
f'(1+)
=lim(h->0+) [ 3(1+h)+ln(1+h) - f(1) ] /h
=lim(h->0+) [ 3(1+h)+ln(1+h) - 3 ] /h
=lim(h->0+) [ 3h+ln(1+h) ] /h
=lim(h->0+) ( 3h+h ) /h
=4
f'(1-)
=lim(h->0-) [ 3(1+h)-ln(1+h) - f(1) ] /h
=lim(h->0-) [ 3(1+h)-ln(1+h)-3 ] /h
=lim(h->0-) ( 3h-h ) /h
=2
=> f'(1) 不存在
ie
f'(x)
=3- 1/x ; 0<x<1
=3+1/x ; x>1
f'(1) 不存在
=3x-lnx ; 0<x<1
=3x+lnx ; x≥1
f(1+)=f(1) = lim(x->1) (3x+lnx) = 3
f(1-)= lim(x->1-) (3x-lnx) = 3
x=1, f(x) 连续
f'(1+)
=lim(h->0+) [ 3(1+h)+ln(1+h) - f(1) ] /h
=lim(h->0+) [ 3(1+h)+ln(1+h) - 3 ] /h
=lim(h->0+) [ 3h+ln(1+h) ] /h
=lim(h->0+) ( 3h+h ) /h
=4
f'(1-)
=lim(h->0-) [ 3(1+h)-ln(1+h) - f(1) ] /h
=lim(h->0-) [ 3(1+h)-ln(1+h)-3 ] /h
=lim(h->0-) ( 3h-h ) /h
=2
=> f'(1) 不存在
ie
f'(x)
=3- 1/x ; 0<x<1
=3+1/x ; x>1
f'(1) 不存在
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询