为什么n维线性空间中的n个线性无关的向量都可以构成它的一组基?谢谢

 我来答
蒿可可山华
2020-05-06 · TA获得超过3万个赞
知道大有可为答主
回答量:1.2万
采纳率:29%
帮助的人:849万
展开全部
在空间中任取一个向量b
加入这n个线性无关的向量ai(i=1,2,...,n)
那么这n+1个向量一定是线性相关的
故存在一组不全为0的ki(i=1,2,...,n)和c
使得k1*a1+k2*a2+...+kn*an+c*b=0
易知c≠0
那么把等式整理下
可得b=...
即b可由ai(i=1,2,...,n)线性表示
由b得任意性知ai(i=1,2,...,n)是空间的一组基
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
能觅翠佴容
2019-06-06 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.2万
采纳率:34%
帮助的人:873万
展开全部
因为rn中的任意一向量均可由这n个线性无关的n维向量线性表出,故它是rn的一组基.
下面证明这一事实,
设x是rn中的任意一向量,a1,a2,...,an是n个线性无关的n维向量,由rn中任意n+1个向量必然线性相关,故x,a1,a2,...,an线性相关,即存在不全为零的数b,k1,k2,...,kn,使得
bx+k1a1+k2a2+...knan=0,
b不为零,否则k1a1+k2a2+...+knan=0,与a1,a2,...,an是n个线性无关矛盾,故
x=(-k1a1-k2a2-...-knan/b,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式