高数中求极限的方法的概述
2个回答
展开全部
极限的求法有很多中:
1、连续初等函数,在定义域范举梁围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值正瞎运
2、利用恒等变形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限
4、利用无穷小的性质求极限
5、利用等价无穷小替换求极限,可以将原式化简计算
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限
7、利用两个重要极限公式求极限
8、利用左、右极限求极限,(常是针对求在一个间断点处的极限值)
9、洛必达法则求极限
其中,最常用的方法是洛必达法则,等价无穷小代换,两个重要极限公式。
在做题时,如果是分子或分母的一个因子部分,如果在某一过程中,可以得出一个不为0的常数值时,我们常用数值直接代替,进行化简。另外,也可以用等价无穷小代换进行化简,化简之后再考神禅虑用洛必达法则。
1、连续初等函数,在定义域范举梁围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值正瞎运
2、利用恒等变形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限
4、利用无穷小的性质求极限
5、利用等价无穷小替换求极限,可以将原式化简计算
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限
7、利用两个重要极限公式求极限
8、利用左、右极限求极限,(常是针对求在一个间断点处的极限值)
9、洛必达法则求极限
其中,最常用的方法是洛必达法则,等价无穷小代换,两个重要极限公式。
在做题时,如果是分子或分母的一个因子部分,如果在某一过程中,可以得出一个不为0的常数值时,我们常用数值直接代替,进行化简。另外,也可以用等价无穷小代换进行化简,化简之后再考神禅虑用洛必达法则。
展开全部
1、利用定义求极限:
例如:很多就不必写了!
2、利用柯西准则来求!
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数n,使得当n>n时,对于
任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求!
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.
4、利用不等式即纯瞎:夹掘裤念挤定理!
例子就不举了!
5、利用变量替换求极限!
例如lim
(x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/m.
6、利用两个重要极限来求极限。
(1)lim
sinx/x=1
x->0
(2)lim
(1+1/n)^n=e
n->∞
7、利用单调有界必有极限来求!
8、利用函数连续得性质求极限
9、用洛必达法则求,这是用得最多得判困。
10、用泰勒公式来求,这用得也十很经常得。
例如:很多就不必写了!
2、利用柯西准则来求!
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数n,使得当n>n时,对于
任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求!
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.
4、利用不等式即纯瞎:夹掘裤念挤定理!
例子就不举了!
5、利用变量替换求极限!
例如lim
(x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/m.
6、利用两个重要极限来求极限。
(1)lim
sinx/x=1
x->0
(2)lim
(1+1/n)^n=e
n->∞
7、利用单调有界必有极限来求!
8、利用函数连续得性质求极限
9、用洛必达法则求,这是用得最多得判困。
10、用泰勒公式来求,这用得也十很经常得。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询