洛必达法则要求导函数连续吗
4个回答
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
不对。这个和罗必塔法则无关。
而且这个结论不正确,函数可导不一定说明导函数连续。满足导数极限定理才可以说导数是连续的。
简单说,如果f(x)在x0点可导并且在该点处导函数极限存在,导函数才一定连续。
你的推导是没意义的,如果某点导数不存在,你应用罗必塔法则就出问题了。
例如y=x+|x|
y=0
(当x<0)
,
y'=0
y=2x(当x>0)
,
y'=2
y=0
(当x=0)
左导数为0,右导数为2,所以
y(0)'
不存在,可见y'(x)不连续。
这时候你根本用不了罗必塔法则,因为y'(0)根本不存在。
而且这个结论不正确,函数可导不一定说明导函数连续。满足导数极限定理才可以说导数是连续的。
简单说,如果f(x)在x0点可导并且在该点处导函数极限存在,导函数才一定连续。
你的推导是没意义的,如果某点导数不存在,你应用罗必塔法则就出问题了。
例如y=x+|x|
y=0
(当x<0)
,
y'=0
y=2x(当x>0)
,
y'=2
y=0
(当x=0)
左导数为0,右导数为2,所以
y(0)'
不存在,可见y'(x)不连续。
这时候你根本用不了罗必塔法则,因为y'(0)根本不存在。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你要记住这个结论这个显然是需要的,当你学到更深的地方的时候,所以你那个补充的推断是缺少条件的,
这两个是不同的概念,洛必达必须在那个点的附近都可导,但是在周围都不可导了,那么在这个点的很小范围内就一定要连续。
对你补充的问题我这样说,求导后各自极限要存在,导致不能使用洛必达法则,这个有时会拿来做出题点、两导函数比值的极限必须存在
两个函数都可以求导,就知道有些函数确实可以满足在某点可导、两个函数都可以求导、是未定式
2,
1,洛必达法则使用前提有三个,就是你那个是在一个点可导,分母的函数求导后函数值不能为0
3
这两个是不同的概念,洛必达必须在那个点的附近都可导,但是在周围都不可导了,那么在这个点的很小范围内就一定要连续。
对你补充的问题我这样说,求导后各自极限要存在,导致不能使用洛必达法则,这个有时会拿来做出题点、两导函数比值的极限必须存在
两个函数都可以求导,就知道有些函数确实可以满足在某点可导、两个函数都可以求导、是未定式
2,
1,洛必达法则使用前提有三个,就是你那个是在一个点可导,分母的函数求导后函数值不能为0
3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
洛比达法则的前提要求是极限式子要是待定型,比如使用洛比达法则的前提是
①lim
f(x)=0,
lim
g(x)=0
②在该极限过程中都可导,且分母导数不为0
③lim
f'(x)/g'(x)存在
其中第三点式很关键的,比如你提的这个问题,我们不知道lim
f'(x)是否存在,所以在极限不存在时是不能用洛比达法则的。下面举个例子
f(x)=x²sin(1/x)
它在x=0点是可导的,但是它的导函数
f'(x)=2xsin(1/x)-cos(1/x)
x≠0
0
x=0
显然lim【x→0】f'(x)不存在,所以f'(x)在x=0点不连续!
不明白可以追问,如果有帮助,请选为满意回答!
①lim
f(x)=0,
lim
g(x)=0
②在该极限过程中都可导,且分母导数不为0
③lim
f'(x)/g'(x)存在
其中第三点式很关键的,比如你提的这个问题,我们不知道lim
f'(x)是否存在,所以在极限不存在时是不能用洛比达法则的。下面举个例子
f(x)=x²sin(1/x)
它在x=0点是可导的,但是它的导函数
f'(x)=2xsin(1/x)-cos(1/x)
x≠0
0
x=0
显然lim【x→0】f'(x)不存在,所以f'(x)在x=0点不连续!
不明白可以追问,如果有帮助,请选为满意回答!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询