已知sinc+cosc=2sina,sinc*cosc=sin^b,求证:4cos^2 2a=cos^2 2b
1个回答
展开全部
证明:
∵在三角形abc中,
∴a+b+c=180度,得sina=sin(b+c)
则a/2=90度-(b+c)/2,得cosa/2=sin((b+c)/2)
左边=sin(b+c)+sinb+sinc
则4cos(a/2)cos(b/2)cos(c/2)
=4sin((b+c)/2)cos(b/2)cos(c/2)
=4cos(b/2)cos(c/2)(sinb/2·cosc/2+cosb/2·sinc/2)
=4sin(b/2)cos(b/2)(cos(c/2))^2+4sin(c/2)cos(c/2)(cos(b/2))^2
=sinb(cosc+1)+sinc(cosb+1)
=sin(b+c)+sinb+sinc
左边=右边
原式成立!
∵在三角形abc中,
∴a+b+c=180度,得sina=sin(b+c)
则a/2=90度-(b+c)/2,得cosa/2=sin((b+c)/2)
左边=sin(b+c)+sinb+sinc
则4cos(a/2)cos(b/2)cos(c/2)
=4sin((b+c)/2)cos(b/2)cos(c/2)
=4cos(b/2)cos(c/2)(sinb/2·cosc/2+cosb/2·sinc/2)
=4sin(b/2)cos(b/2)(cos(c/2))^2+4sin(c/2)cos(c/2)(cos(b/2))^2
=sinb(cosc+1)+sinc(cosb+1)
=sin(b+c)+sinb+sinc
左边=右边
原式成立!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询