已知an=2^n-1,求设bn=an/(an+1)(an+1+1),求数列bn的前n项和
1个回答
展开全部
解:因为an=2^n-1
bn=an/(an+1)(a(n+1))=(2^n-1)/2^(2n+1)=1/2^(n-1)-1/2^(2n+1)
数列{1/2^(n+1)}是以1/2为公比,1/4为首项的等比数列
数列{1/2^(2n+1)}是以1/2为公比,1/8为首项的等比数列
所以数列{bn}前n项和是
Sn=1/4[1-(1/2)^n]/(1-1/2)-1/8[1-(1/2)^n]/(1-1/2)
=1/4[1-(1/2)^n]=1/4-(1/2)^(n+2)
bn=an/(an+1)(a(n+1))=(2^n-1)/2^(2n+1)=1/2^(n-1)-1/2^(2n+1)
数列{1/2^(n+1)}是以1/2为公比,1/4为首项的等比数列
数列{1/2^(2n+1)}是以1/2为公比,1/8为首项的等比数列
所以数列{bn}前n项和是
Sn=1/4[1-(1/2)^n]/(1-1/2)-1/8[1-(1/2)^n]/(1-1/2)
=1/4[1-(1/2)^n]=1/4-(1/2)^(n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询