如何证明三角形两边之和大于第三边

 我来答
祝绍晖孟勃
2019-10-20 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:25%
帮助的人:732万
展开全部
可以用反证法证明
设任意三角形的三边分别为:a,b,c,(自然:a大于0,b大于0,c大于0)
根据反证法,我们这样假设:三角形的任意两边之和都小于或者等于第三边。
所以:a+b小于或等于
c(1)
a+c小于或等于
b(2)
b+c小于或等于
a(3)
将(1)(2)(3)相加可以得出:2(a+b+c)小于或等于(a+b+c),即:(a+b+c)小于或等于0,
这个结论错误,
故:假设不成立,即:三角形任意两边之和大于第三边。
茆诗兰光冰
游戏玩家

2019-04-24 · 游戏我都懂点儿,问我就对了
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:695万
展开全部
证明:
假设构成三角形的三条边分别为:a、b、c,且a、b、c大小任意;
①先证明:a+b>c;
因为a、b、c都为正数,所以要使得a+b>c成立,只需证明(a+b)²>c²,即:
(a+b)²-c²>0;
根据余弦定理:cosC=(a²+b²-c²)/2ab=((a+b)²-c²-2ab)/2ab;
移项得:(a+b)²-c²=2ab(2+cosB);
对于等式的右边:cosB在角B取值范围内的值为(-1,1);
所以1<(2+cosB)<2;
又因为a、b都是正数;
所以2ab(2+cosB)>0,即(a+b)²-c²>0,即a+b>c;
②对于a+c>b和b+c>a的情况证明是类似的;
综上所述,证得:三角形的任意两边之和大于第三边。
证毕。
谢谢!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
愈芳馨铁瑜
2019-09-22 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:33%
帮助的人:750万
展开全部
用我的.
因为两点之间线段最短,所以在A,B,C三点中,AB
的距离比BC+AC的短
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式