设数列{an}满足条件a1=8,a2=0,a3=-7,且数列{an+1-an}(...
设数列{an}满足条件a1=8,a2=0,a3=-7,且数列{an+1-an}(n∈N*)是等差数列.(1)设cn=an+1-an,求数列{cn}的通项公式;(2)若bn...
设数列{an}满足条件a1=8,a2=0,a3=-7,且数列{an+1-an}(n∈N*)是等差数列. (1)设cn=an+1-an,求数列{cn}的通项公式; (2)若bn=2n•cn,求S=b1+b2+…+bn.
展开
1个回答
展开全部
解:(1)∵数列{an+1-an}是等差数列,cn=an+1-an
∴数列{cn}是等差数列,首项c1=a2-a1=-8,c2=a3-a2=-7
∴公差d=c2-c1=-7-(-8)=1
∴cn=c1+(n-1)d=-8+(n-1)×1=n-9
(2)∵bn=(n-9)•2n
∴Sn=(-8)•2+(-7)•22+…+(n-9)•2n
2Sn=(-8)•22+(-7)•23+…+(n-9)•2n+1
两式相减可得,-Sn=(-8)•2+22+23+…+2n-(n-9)•2n+1
=-16+
4(1-2n-1)
1-2
-(n-9)•2n+1
=-16+2n+1-4-(n-9)•2n+1
∴Sn=20+(n-10)•2n+1
∴数列{cn}是等差数列,首项c1=a2-a1=-8,c2=a3-a2=-7
∴公差d=c2-c1=-7-(-8)=1
∴cn=c1+(n-1)d=-8+(n-1)×1=n-9
(2)∵bn=(n-9)•2n
∴Sn=(-8)•2+(-7)•22+…+(n-9)•2n
2Sn=(-8)•22+(-7)•23+…+(n-9)•2n+1
两式相减可得,-Sn=(-8)•2+22+23+…+2n-(n-9)•2n+1
=-16+
4(1-2n-1)
1-2
-(n-9)•2n+1
=-16+2n+1-4-(n-9)•2n+1
∴Sn=20+(n-10)•2n+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询