富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
求微分方程:y'=dy/dx=(1-sinxcosy-cosxsiny)/(sinxcosy+cosxsiny)的通解;
解:(sinxcosy+cosxsiny)dy=(1-sinxcosy-cosxsiny)dx;
即 (sinxcosy+cosxsiny-1)dx+(sinxcosy+cosxsiny)dy=0
其中P=sinxcosy+cosxsiny-1; Q=sinxcosy+cosxsiny;
∵ ∂P/∂y=-sinxsiny+cosxcosy=cos(x+y); ∂Q/∂x=cosxcosy-sinxsiny=cos(x+y):
∴∂P/∂y=∂Q/∂x;∴原方程是一个全微分方程;
事实上,由 (sinxcosy+cosxsiny-1)dx+(sinxcosy+cosxsiny)dy=0
即 [sin(x+y)-1]dx+sin(x+y)dy=0
可得 d[-cos(x+y)-x]=0
积分之即得通解 u=-cos(x+y)-x=C;
捡验:du=(∂u/∂x)dx+(∂u/∂y)dy=[sin(x+y)-1]dx+sin(x+y)dy=0
∴dy/dx=[1-sin(x+y)]/sin(x+y);完全正确。
解:(sinxcosy+cosxsiny)dy=(1-sinxcosy-cosxsiny)dx;
即 (sinxcosy+cosxsiny-1)dx+(sinxcosy+cosxsiny)dy=0
其中P=sinxcosy+cosxsiny-1; Q=sinxcosy+cosxsiny;
∵ ∂P/∂y=-sinxsiny+cosxcosy=cos(x+y); ∂Q/∂x=cosxcosy-sinxsiny=cos(x+y):
∴∂P/∂y=∂Q/∂x;∴原方程是一个全微分方程;
事实上,由 (sinxcosy+cosxsiny-1)dx+(sinxcosy+cosxsiny)dy=0
即 [sin(x+y)-1]dx+sin(x+y)dy=0
可得 d[-cos(x+y)-x]=0
积分之即得通解 u=-cos(x+y)-x=C;
捡验:du=(∂u/∂x)dx+(∂u/∂y)dy=[sin(x+y)-1]dx+sin(x+y)dy=0
∴dy/dx=[1-sin(x+y)]/sin(x+y);完全正确。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询