求微分方程y"=3y^1/2满足y(0)=1,y'(0)=2的特解.快考试了,
1个回答
展开全部
∵y"=3y^(1/2)
==>y'dy'/dy=3y^(1/2)
==>y'dy'=3y^(1/2)dy
∴y'^2=4y^(3/2)+C1
(C1是常数)
∵y(0)=1,y'(0)=2,则C1=0
∴y'^2=4y^(3/2)
==>y'=±2y^(3/4)
==>dy/y^(3/4)=±2dx
==>4y^(1/4)=C2±2x
(C2是常数)
==>y=(C2/4±x/2)^4
∵y(0)=1,则C2=±4
∴y=(±1±x/2)^4=(1+x/2)^4
故原方程满足所给初始条件的特解是y=(1+x/2)^4.
==>y'dy'/dy=3y^(1/2)
==>y'dy'=3y^(1/2)dy
∴y'^2=4y^(3/2)+C1
(C1是常数)
∵y(0)=1,y'(0)=2,则C1=0
∴y'^2=4y^(3/2)
==>y'=±2y^(3/4)
==>dy/y^(3/4)=±2dx
==>4y^(1/4)=C2±2x
(C2是常数)
==>y=(C2/4±x/2)^4
∵y(0)=1,则C2=±4
∴y=(±1±x/2)^4=(1+x/2)^4
故原方程满足所给初始条件的特解是y=(1+x/2)^4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询