高数:请问这一步积分是换算的?
5个回答
展开全部
利用三角函数周期性,t=x-pi替换旧得到了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
let
u=x-π
du=dx
x=π/2, u=-π/2
x=π, u=0
∫(π/2->π) sin2x/[1+(sinx)^4 ] dx
=∫(0->-π/2) sin2u/[1+(sinu)^4 ] (-du)
=∫(-π/2->0) sin2u/[1+(sinu)^4 ] du
=∫(-π/2->0) sin2x/[1+(sinx)^4 ] dx
//
∫(0->π) | sin2x|/[1+(sinx)^4 ] dx
=∫(0->π/2) | sin2x|/[1+(sinx)^4 ] dx +∫(π/2->π) | sin2x|/[1+(sinx)^4 ] dx
=∫(0->π/2) | sin2x|/[1+(sinx)^4 ] dx +∫(-π/2->0) | sin2x|/[1+(sinx)^4 ] dx
=∫(-π/2->π/2) | sin2x|/[1+(sinx)^4 ] dx
=∫(0->π/2) sin2x/[1+(sinx)^4 ] dx +∫(π/2->π) sin2x/[1+(sinx)^4 ] dx
u=x-π
du=dx
x=π/2, u=-π/2
x=π, u=0
∫(π/2->π) sin2x/[1+(sinx)^4 ] dx
=∫(0->-π/2) sin2u/[1+(sinu)^4 ] (-du)
=∫(-π/2->0) sin2u/[1+(sinu)^4 ] du
=∫(-π/2->0) sin2x/[1+(sinx)^4 ] dx
//
∫(0->π) | sin2x|/[1+(sinx)^4 ] dx
=∫(0->π/2) | sin2x|/[1+(sinx)^4 ] dx +∫(π/2->π) | sin2x|/[1+(sinx)^4 ] dx
=∫(0->π/2) | sin2x|/[1+(sinx)^4 ] dx +∫(-π/2->0) | sin2x|/[1+(sinx)^4 ] dx
=∫(-π/2->π/2) | sin2x|/[1+(sinx)^4 ] dx
=∫(0->π/2) sin2x/[1+(sinx)^4 ] dx +∫(π/2->π) sin2x/[1+(sinx)^4 ] dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
π/4 ∫(0,π) |sin2x|/[1+(sinx)^4]dx
=π/4 ∫(0,π/2) |sin2x|/[1+(sinx)^4]dx+π/4 ∫(π/2,π) |sin2x|/[1+(sinx)^4]dx
上述式子中的第二部分令x=t+π,则
=π/4 ∫(0,π/2) |sin2x|/[1+(sinx)^4]dx+π/4∫(–π/2,0)
|sin(2t+2π)|/[1+(sin(t+π))^4]d(t+π)
=π/4 ∫(0,π/2) |sin2x|/[1+(sinx)^4]dx+π/4∫(–π/2,0)
|sin2t|/[1+(–sint)^4]dt
=π/4 ∫(0,π/2) |sin2x|/[1+(sinx)^4]dx+π/4∫(–π/2,0)
|sin2t|/[1+(sint)^4]dt
=π/4 ∫(0,π/2) |sin2x|/[1+(sinx)^4]dx+π/4∫(–π/2,0)
|sin2x|/[1+(sinx)^4]dx
=π/4 ∫(–π/2,π/2) |sin2x|/[1+(sinx)^4]dx
π/4 ∫(0,π) |sin2x|/[1+(sinx)^4]dx
=π/4 ∫(0,π/2) sin2x/[1+(1–cos2x)²/4] dx–π/4 ∫(π/2,π) sin2x/[1+(1–cos2x)²/4] dx
=π∫(0,π/2) sin2x/[4+(1–cos2x)²] dx–π ∫(π/2,π) sin2x/[4+(1–cos2x)²] dx
=π/2 ∫(0,π) sinx/[4+(1–cosx)²] dx–π/2 ∫(π,2π) sinx/[4+(1–cosx)²] dx
=π/2 ∫(0,π) 1/[4+(1–cosx)²] d(1–cosx)–π/2 ∫(π,2π) 1/[4+(1–cosx)²] d(1–cosx)
=π/4 arctan[(1–cosx)/2]|(0,π)–π/4 arctan[(1–cosx)/2]|(π,2π)
=π/4·π/4–π/4·(–π/4)
=π²/8
π/4 ∫(–π/2,π/2) |sin2x|/[1+(sinx)^4] dx
=–π/4 ∫(–π/2,0) sin2x/[1+(1–cos2x)²/4] dx+π/4 ∫(0,π/2) sin2x/[1+(1–cos2x)²/4] dx
=–π∫(–π/2,0) sin2x/[4+(1–cos2x)²] dx+π ∫(0,π/2) sin2x/[4+(1–cos2x)²] dx
=–π/2 ∫(–π,0) sinx/[4+(1–cosx)²] dx+π/2 ∫(0,π) sinx/[4+(1–cosx)²] dx
=–π/2 ∫(–π,0) 1/[4+(1–cosx)²] d(1–cosx)+π/2 ∫(0,π) 1/[4+(1–cosx)²] d(1–cosx)
=–π/4 arctan[(1–cosx)/2]|(–π,0)+π/4 arctan[(1–cosx)/2]|(0,π)
=–π/4·(0–π/4)+π/4·(π/4–0)
=π²/8
=π/4 ∫(0,π/2) |sin2x|/[1+(sinx)^4]dx+π/4 ∫(π/2,π) |sin2x|/[1+(sinx)^4]dx
上述式子中的第二部分令x=t+π,则
=π/4 ∫(0,π/2) |sin2x|/[1+(sinx)^4]dx+π/4∫(–π/2,0)
|sin(2t+2π)|/[1+(sin(t+π))^4]d(t+π)
=π/4 ∫(0,π/2) |sin2x|/[1+(sinx)^4]dx+π/4∫(–π/2,0)
|sin2t|/[1+(–sint)^4]dt
=π/4 ∫(0,π/2) |sin2x|/[1+(sinx)^4]dx+π/4∫(–π/2,0)
|sin2t|/[1+(sint)^4]dt
=π/4 ∫(0,π/2) |sin2x|/[1+(sinx)^4]dx+π/4∫(–π/2,0)
|sin2x|/[1+(sinx)^4]dx
=π/4 ∫(–π/2,π/2) |sin2x|/[1+(sinx)^4]dx
π/4 ∫(0,π) |sin2x|/[1+(sinx)^4]dx
=π/4 ∫(0,π/2) sin2x/[1+(1–cos2x)²/4] dx–π/4 ∫(π/2,π) sin2x/[1+(1–cos2x)²/4] dx
=π∫(0,π/2) sin2x/[4+(1–cos2x)²] dx–π ∫(π/2,π) sin2x/[4+(1–cos2x)²] dx
=π/2 ∫(0,π) sinx/[4+(1–cosx)²] dx–π/2 ∫(π,2π) sinx/[4+(1–cosx)²] dx
=π/2 ∫(0,π) 1/[4+(1–cosx)²] d(1–cosx)–π/2 ∫(π,2π) 1/[4+(1–cosx)²] d(1–cosx)
=π/4 arctan[(1–cosx)/2]|(0,π)–π/4 arctan[(1–cosx)/2]|(π,2π)
=π/4·π/4–π/4·(–π/4)
=π²/8
π/4 ∫(–π/2,π/2) |sin2x|/[1+(sinx)^4] dx
=–π/4 ∫(–π/2,0) sin2x/[1+(1–cos2x)²/4] dx+π/4 ∫(0,π/2) sin2x/[1+(1–cos2x)²/4] dx
=–π∫(–π/2,0) sin2x/[4+(1–cos2x)²] dx+π ∫(0,π/2) sin2x/[4+(1–cos2x)²] dx
=–π/2 ∫(–π,0) sinx/[4+(1–cosx)²] dx+π/2 ∫(0,π) sinx/[4+(1–cosx)²] dx
=–π/2 ∫(–π,0) 1/[4+(1–cosx)²] d(1–cosx)+π/2 ∫(0,π) 1/[4+(1–cosx)²] d(1–cosx)
=–π/4 arctan[(1–cosx)/2]|(–π,0)+π/4 arctan[(1–cosx)/2]|(0,π)
=–π/4·(0–π/4)+π/4·(π/4–0)
=π²/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询