值域的求法

值域的求法?本人我如果函数能画出图象,我就会求值域,不能画函数的话我就求不出,请求各位帮助。能者追加100分!... 值域的求法?
本人我如果函数能画出图象,我就会求值域,不能画函数的话我就求不出,请求各位帮助。
能者追加100分!
展开
机俊达5a
推荐于2016-12-01 · TA获得超过2115个赞
知道小有建树答主
回答量:338
采纳率:0%
帮助的人:433万
展开全部
《函数值域求法十一种》尚化春
http://www.vsedu.com/educa/unvisity/zxxzt/200710zt/xf/gz/sx/34.htm

在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。

1. 直接观察法
对于一些比较简单的函数,其值域可通过观察得到

2. 配方法
配方法是求二次函数值域最基本的方法之一

3. 判别式法

4. 反函数法
直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域

5. 函数有界性法
直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域

6. 函数单调性法

7. 换元法
通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用

8. 数形结合法
其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目

9. 不等式法
利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧

10. 一一映射法
原理:因为在定义域上x与y是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围

11. 多种方法综合运用

原文章中还有大量典型例题,如果楼主打不开,可留一个邮箱,我把复制下来的文章发给你~~

参考资料: http://www.vsedu.com/educa/unvisity/zxxzt/200710zt/xf/gz/sx/34.htm

丙星晴h
2008-10-15 · TA获得超过3.2万个赞
知道大有可为答主
回答量:4.3万
采纳率:17%
帮助的人:8033万
展开全部
函数值域的求法
一,配方法
形如 y=af 2(x)+bf(x)+c(a≠0) 的函数常用配方法求函数的值域, 要注意 f(x) 的取值范围.
例1 (1)求函数 y=x2+2x+3 在下面给定闭区间上的值域:
二,换元法
通过代数换元法或者三角函数换元法, 把无理函数,指数函数,对数函数等超越函数转化为代数函数来求函数值域的方法(关注新元范围).
例2 求下列函数的值域:
(1) y=x- x-1 ;
(2) y=x+ 2-x2 ;
(3) y=sinx+cosx+sinxcosx+1 .
①[-4, -3]; ②[-4, 1]; ③[-2, 1]; ④[0, 1].
[6, 11];
[2, 11];
[2, 6];
[3, 6].
3
4
[ , +∞)
(2)求函数 y=sin2x+4cosx+1 的值域.
[-3, 5].
[0, + 2 ]
3
2
[- 2 , 2]
三,方程法
四,分离常数法
利用已知函数的值域求给定函数的值域.
例3 求下列函数的值域:
2x+1
2x
(1)y= ;
sinx-3
(2)y= ;
sinx+2
(3)y=3+ 2+x + 2-x ;
主要适用于具有分式形式的函数解析式, 通过变形, 将函数化成 y=a+ 的形式.
b
g(x)
例4 求下列函数的值域:
2x+1
2x
(1)y= ;
sinx-3
(2)y= .
sinx+2
(0, 1)
3
2
[- , - ]
1
4
(0, 1)
3
2
[- , - ]
1
4
(4)若f(x)的值域为[ , ], 求 y=f(x)+ 1-2f(x) 的值域.
4
9
3
8
7
8
7
9
[ , ]
[5, 3+2 2 ]
五,判别式法
例5 求函数 y = 的值域.
x2+x+1
x2-x
主要适用于形如 y = (a, d不同时为零)的函数(最好是满足分母恒不为零).
ax2+bx+c
dx2+ex+f
六,均值不等式法
(1)y= ;
x2+1
2x
例6 求下列函数的值域:
(2)y= (x>1) .
x-1
x2-2x+5
[-1, 1]
[4, +∞)
能转化为 A(y)x2+B(y)x+C(y)=0 的函数常用判别式法求函数的值域.
利用基本不等式求出函数的最值进而确定函数的值域. 要注意满足条件"一正,二定,三等".
[1- , 1+ ]
2 3
3
2 3
3
七,利用函数的单调性
八,数形结合法
主要适用于 (1) y=ax+b+ cx+d (ac>0)形式的函数; (2)利用基本不等式不能求得 y=x+ (k>0)的最值(等号不成立)时.
k
x
例7 求下列函数的值域:
(1)y= 1-2x - x ;
(2)y=x+ (04
x
1
2
[- , +∞)
[5, +∞)
当函数的解析式明显具备某种几何意义, 像两点间的距离公式,直线斜率等时可考虑用数形结合法.
例8 求下列函数的值域:
(1)y=|x-1|+|x+4| ;
sinx-3
(2)y= ;
2+cosx
(3)y= 2x2-6x+9 + 2x2-10x+17 ;
(4) 若 x2+y2=1, 求 x+y 的取值范围;
(5) 若 x+y=1, 求 x2+y2 的取值范围.
[5, +∞)
1
2
[ , +∞)
(0, 3 ]
(3)y= x+3 - x .
[-2- , -2+ ]
2 3
3
2 3
3
[2 5 , +∞)
[- 2 , 2 ]
九,导数法
对于可导函数, 可利用导数的性质求出函数的最值, 进而求得函数的值域.
例9 求下列函数在给定区间上的值域:
(2)y=x5-5x4+5x3+2, x∈[-1, 2].
(1)y=x+ , x∈[1, 4];
4
x
[4, 5]
[-9, 3]
1.求下列函数的值域:
值域课堂练习题
(1) y= ;
x-2
3x+1
(2) y=2x+4 1-x ;
(3) y=x+ 1-x2 ;
(1)(-∞, 3)∪(3, +∞)
(2)(-∞, 4]
(4)[3, +∞)
(4) y=|x+1|+ (x-2)2 ;
(3)[-1, 2 ]
(5) y= ;
2-cosx
sinx
(6) y= ;
x2+x+1
2x2-x-2
(7) y= ( 0 恒成立.
∴△=64-4mn0.
mx2+8x+n
x2+1
令 y= ,
则 1≤y≤9.
mx2+8x+n
x2+1
问题转化为 x∈R 时, y= 的值域为[1, 9].
变形得 (m-y)x2+8x+(n-y)=0,
当 m≠y 时, ∵x∈R, ∴△=64-4(m-y)(n-y)≥0.
整理得 y2-(m+n)y+mn-16≤0.
依题意
m+n=1+9,
mn-16=1×9,
解得 m=5, n=5.
当 m=y 时, 方程即为 8x+n-m=0, 这时 m=n=5 满足条件.
故所求 m 与 n 的值均为 5.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友50370ce8945
2019-07-19 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:34%
帮助的人:839万
展开全部

函数值域的几种常见方法
1.直接法:利用常见函数的值域来求
一次函数y=ax+b(a
0)的定义域为r,值域为r;
反比例函数
的定义域为{x|x
0},值域为{y|y
0};
二次函数
的定义域为r,
当a>0时,值域为{
};当a<0时,值域为{
}.
例1.求下列函数的值域

y=3x+2(-1
x
1)



解:①∵-1
x
1,∴-3
3x
3,
∴-1
3x+2
5,即-1
y
5,∴值域是[-1,5]
②∵

即函数
的值域是
{
y|
y
2}

④当x>0,∴
=

当x<0时,
=-
∴值域是
[2,+
).(此法也称为配方法)
函数
的图像为:
2.二次函数比区间上的值域(最值):
例2
求下列函数的最大值、最小值与值域:


解:∵
,∴顶点为(2,-3),顶点横坐标为2.
①∵抛物线的开口向上,函数的定义域r,
∴x=2时,ymin=-3
,无最大值;函数的值域是{y|y
-3
}.
②∵顶点横坐标2
[3,4],
当x=3时,y=
-2;x=4时,y=1;
∴在[3,4]上,
=-2,
=1;值域为[-2,1].
③∵顶点横坐标2
[0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上,
=-2,
=1;值域为[-2,1].
④∵顶点横坐标2
[0,5],当x=0时,y=1;x=2时,y=-3,
x=5时,y=6,
∴在[0,1]上,
=-3,
=6;值域为[-3,6].
注:对于二次函数
,
⑴若定义域为r时,
①当a>0时,则当
时,其最小值

②当a<0时,则当
时,其最大值
.
⑵若定义域为x
[a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若
[a,b],则
是函数的最小值(a>0)时或最大值(a<0)时,再比较
的大小决定函数的最大(小)值.
②若
[a,b],则[a,b]是在
的单调区间内,只需比较
的大小即可决定函数的最大(小)值.
注:①若给定区间不是闭区间,则可能得不到最大(小)值;
②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.
3.判别式法(△法):
判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论
例3.求函数
的值域
方法一:去分母得
(y-1)
+(y+5)x-6y-6=0


y11时
∵x?r
∴△=(y+5)
+4(y-1)×6(y+1)
0
由此得
(5y+1)
0
检验

(代入①求根)
∵2
?
定义域
{
x|
x12且
x13}

再检验
y=1
代入①求得
x=2
∴y11
综上所述,函数
的值域为
{
y|
y11且
y1
}
方法二:把已知函数化为函数
(x12)

x=2时

说明:此法是利用方程思想来处理函数问题,一般称判别式法.
判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.
4.换元法
例4.求函数
的值域
解:设

t
0
x=1-
代入得
5.分段函数
例5.求函数y=|x+1|+|x-2|的值域.
解法1:将函数化为分段函数形式:
,画出它的图象(下图),由图象可知,函数的值域是{y|y
3}.
解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+
].
如图
两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
藏修贤素童
2019-03-20 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:27%
帮助的人:669万
展开全部
1.导数法
利用导数求出其单调性和极值点的极值,最常规,最不易高错,但往往计算很烦杂
2.分离常数

x^2/(x^2+1)将其分离成
1-1/(x^2+1)再判断值域
3.分子分母同除以某个变量
如x/(x^2+1)同时除以x得
1/(x+1/x)分母的值域很好求,再带进整个函数即可
4.换元法
可以说是3的拓展
如(x+1)/(x^2+1)一类分子分母同时除以x仍无法判断的。
令t=x+1,再把x^2表示成(t-1)^2,再分子分母同时除以t就成了3中的情形
5.基本换元法
型如1/(x+1)+1/(x+1)^2等,直接令t=1/(x+1),求出t的定义域,可以很快将函数换成型如
t^2+t的形式,从而可求值域。当然,要注意t的定义域
6.倒数法
和2基本相同。如x/(x^2+1)先求其倒数x+1/x,再倒回去,2,6基本类似。
以上是几条比较基本和常用的方法,当然要注意他们的综合应用。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
的世胡0x
2019-10-23 · TA获得超过136个赞
知道答主
回答量:103
采纳率:100%
帮助的人:5.1万
展开全部

定义域值域应该怎么求,高一数学知识点,5分钟就能学会

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式