怎么解一元二次方程
2个回答
展开全部
一元二次方程解法:
1. 第一步:解一元二次方程时,如果给的不是一元二次方程的一般式,首先要化为一元二次方程的一般式,再确定用什么方法求解。
2. 解一元二次方程的常用方法:
(1)直接开方法:把一元二次方程化为一般式后,如果方程中缺少一次项,是一个形如ax2+c=0的方程时,可以用此方法求解。
解法步骤:①把常数项移到等号右边,
;
②方程中每项都除以二次项系数,
;
③开平方求出未知数的值:
(2)因式分解法:把一元二次方程化为一般式后,如果方程左边的多项式可以因式分解的话,可以使用此方法求解。
解法步骤:①把方程的左边因式分解,转化为两个因式乘积的形式;
②令每个因式分别等于0,进而求出方程的两个根;
例:解关于x的方程:
解:把方程左边因式分解成:(x-m)(x+n)=0
∴x1=m,x2=n
(3)配方法:当一元二次方程化为一般式后,不能用直接开方和因式分解的方法求解时,可以使用此方法。
解法步骤:①若方程的二次项系数不是1,方程中各项同除以二次项系数,使二次项系数为1;
②把常数项移到等号右边;
③方程两边同时加上一次项系数一半的平方;
④方程左边变成一个完全平方式,右边合并同类项,变为一个实数;
⑤方程两边同时开平方,从而求出方程的两个根;
例:解方程:
解:方程两边同除以3得:
移项,得:
∴
即:
∴ x+2=±√6
∴
(4)公式法:利用一元二次方程的求根公式解一元二次方程,适用于所有的一元二次方程。
求根公式:,其中a≠0。
解法步骤:①先把一元二次方程化为一般式;’
②找出方程中a、b、c等各项系数和常数值;
③计算出b2-4ac的值;
④把a、b、b2-4ac的值代入公式;
⑤求出方程的两个根;
例:解方程:
解:(1)方程中:a=1,b=-4,c=4
∴x={-(-4)±√0}/2×1=2,∴原方程根为
1. 第一步:解一元二次方程时,如果给的不是一元二次方程的一般式,首先要化为一元二次方程的一般式,再确定用什么方法求解。
2. 解一元二次方程的常用方法:
(1)直接开方法:把一元二次方程化为一般式后,如果方程中缺少一次项,是一个形如ax2+c=0的方程时,可以用此方法求解。
解法步骤:①把常数项移到等号右边,
;
②方程中每项都除以二次项系数,
;
③开平方求出未知数的值:
(2)因式分解法:把一元二次方程化为一般式后,如果方程左边的多项式可以因式分解的话,可以使用此方法求解。
解法步骤:①把方程的左边因式分解,转化为两个因式乘积的形式;
②令每个因式分别等于0,进而求出方程的两个根;
例:解关于x的方程:
解:把方程左边因式分解成:(x-m)(x+n)=0
∴x1=m,x2=n
(3)配方法:当一元二次方程化为一般式后,不能用直接开方和因式分解的方法求解时,可以使用此方法。
解法步骤:①若方程的二次项系数不是1,方程中各项同除以二次项系数,使二次项系数为1;
②把常数项移到等号右边;
③方程两边同时加上一次项系数一半的平方;
④方程左边变成一个完全平方式,右边合并同类项,变为一个实数;
⑤方程两边同时开平方,从而求出方程的两个根;
例:解方程:
解:方程两边同除以3得:
移项,得:
∴
即:
∴ x+2=±√6
∴
(4)公式法:利用一元二次方程的求根公式解一元二次方程,适用于所有的一元二次方程。
求根公式:,其中a≠0。
解法步骤:①先把一元二次方程化为一般式;’
②找出方程中a、b、c等各项系数和常数值;
③计算出b2-4ac的值;
④把a、b、b2-4ac的值代入公式;
⑤求出方程的两个根;
例:解方程:
解:(1)方程中:a=1,b=-4,c=4
∴x={-(-4)±√0}/2×1=2,∴原方程根为
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询