因子分析spss步骤
步骤如下:
1、在新建的Excel表格中,插入六列数据,有种类、AC1、AC2、AC3、AC4和AC5;
2、打开SPSS分析工具,点击文件菜单,打开数据选择excel表格,从而导入数据;
3、导入数据之后,调整变量列展示的宽度,展示默认数据视图;
4、单击分析菜单,然后选择降维中的因子;
5、打开因子分析窗口,将AC1、AC2、AC3、AC4和AC5移到变量框中;
6、点击描述按钮,打开对应的窗口,统计勾选初始解,相关系数矩阵勾选系数和KMO和巴特利特球形度检验;
7、接着点击提取按钮,打开窗口并勾选分析相关性矩阵,显示勾选未旋转因子解和碎石图;
8、选择旋转打开窗口,方法选择最大方差法,显示勾选旋转后的解和载荷图;
9、点击得分按钮,打开因子得分窗口,勾选保存为变量,方法选择回归,然后单击继续;
10、最后设置选项,缺失值勾选成列排除个数,系数显示格式勾选按大小排序,然后点击继续;
11、确定之后,生成因子分析结果,有相关性矩阵、KMO和巴特利特检验;
12、根据已选的几个变量,生成公因子方差和总方差解释;
13、接着,生成以组件号为横坐标,特征值为纵坐标,构成碎石图;
14、还可以生成成分矩阵和旋转后的成分矩阵,提取方法是主成分分析法;
15、在成分转换矩阵下方,生成旋转后的空间中的组件图;
16、最后按照成分,生成成分得分系数矩阵和成分得分协方差矩阵。
因子分析模型中,假定每个原始变量由两部分组成:共同因子和唯一因子。共同因子是各个原始变量所共有的因子,解释变量之间的相关关系。唯一因子顾名思义是每个原始变量所特有的因子,表示该变量不能被共同因子解释的部分。
(帮助解读:举个例子,现在一个excel表有10个变量,因子分析可以将这10个变量通过某种算法变为3个,4个,5个等等因子,而每个因子都能表达一种涵义,从而达到了降维的效果,方便接下来的数据分析)
2.因子分析与主成分分析的区别:
主成分分析是试图寻找原有变量的一个线性组合。这个线性组合方差越大,那么该组合所携带的信息就越多。也就是说,主成分分析就是将原始数据的主要成分放大。
因子分析,它是假设原有变量的背后存在着一个个隐藏的因子,这个因子可以可以包括原有变量中的一个或者几个,因子分析并不是原有变量的线性组合。
(帮助解读:主成分分析降维凸显变量中起主导作用的变量,因子分析寻找变量背后可以概括变量特征的因子)
---------------------------算法及原理就不介绍了,比较秃头-----------------------------
二.因子分析怎么做(在spss中):
1.数据准备:
下图数据是一份某城市的空气质量数据,一共6个变量,分别是:二氧化硫、二氧化氮、可吸入颗粒物、一氧化碳、臭氧、细颗粒物。在SPSS中打开数据如下:
图1
2.操作步骤:
1)打开因子分析工具:
在这里插入图片描述
2)选择要进行因子分析的变量:
在这里插入图片描述
3)设置因子分析模型:(可以按照以下截图设置模型,一般来说足够)
a.描述:这里要说一下KMO和Bartlett的球形度检验,
KMO检验统计量是用于比较变量间简单相关系数和偏相关系数的指标。主要应用于多元统计的因子分析。KMO统计量是取值在0和1之间。Kaiser给出了常用的kmo度量标准: 0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合。KMO统计量是取值在0和1之间。当所有变量间的简单相关系数平方和远远大于偏相关系数平方和时,KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;当所有变量间的简单相关系数平方和接近0时,KMO值接近0.KMO值越接近于0,意味着变量间的相关性越弱,原有
广告 您可能关注的内容 |