大数据需要学习什么样的知识?

 我来答
尚学堂前端学院
2020-12-26 · 百度认证:北京尚学堂科技官方账号
尚学堂前端学院
向TA提问
展开全部

1、大数据专业,一般是指大数据采集与管理专业;

2、课程设置

大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Mapreduce的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。

3、核心技术

(1)大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Mapreduce、分布式数据库HBase、分布式数据仓库Hive。

(2)关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。

(3)分布式数据处理。详细介绍分析Map/Reduce计算模型和Hadoop Map/Reduce技术的原理与应用。

(4)海量数据分析与数据挖掘。详细介绍数据挖掘技术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。

(5)物联网与大数据。详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。

(6)文件系统(HDFS)。详细介绍HDFS部署,基于HDFS的高性能提供高吞吐量的数据访问。

(7)NoSQL。详细介绍NoSQL非关系型数据库系统的原理、架构及典型应用。

4、行业现状

今天,越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如百度、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。

在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。

对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站上有很多的大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

成都加米谷大数据
2020-12-18 · 超过82用户采纳过TA的回答
知道小有建树答主
回答量:278
采纳率:83%
帮助的人:8.9万
展开全部
一、Java语言以java语言为基础掌握面向对象编程思想所涉及的知识,以及该知识在面向对象编程思想中的应用,培养学生设计程序的能力。掌握程度:精通
二、数据结构与算法掌握基于JAVA语言的底层数据结构和算法原理,并且能够自己动手写出来关于集合的各种算法和数据结构,并且了解这些数据结构处理的问题和优缺点。掌握程度:熟练。
三、数据库原理与MYSQL数据库掌握关系型数据库的原理,掌握结构化数据的特性。掌握关系型数据库的范式。通过MYSQL数据库掌握通过SQL语言与MYSQL数据库进行交互。熟练掌握各种复杂SQL语句的编写。掌握程度:熟练。
四、LINUX操作系统全面了解LINUX。详解LINUX下的管理命令、用户管理、网络配置管理等。掌握SHELL脚本编程,能够根据具体业务进行复杂SHELL脚本的编写。掌握程度:精通。
五、Hadoop技术学习Hadoop技术的两个核心:分布式文件系统HDFS和分布式计算框架MapReduce。掌握MR的运行过程及相关原理,精通各种业务的MR程序编写。掌握Hadoop的核心源码及实现原理。掌握使用Hadoop进行海量数据的存储、计算与处理。掌握程度:精通。
六、分布式数据库技术:精通分布式数据库HBASE、掌握Mongodb及了解其它分布式数据库技术。精通分布式数据库原理、应用场景、HBASE数据库的设计、操作等,能结合HIVE等工具进行海量数据的存储于检索。掌握程度:精通。
七、数据仓库HIVE精通基于hadoop的数据仓库HIVE。精通HIVESQL的语法,精通使用HIVESQL进行数据操作。内部表、外部表及与传统数据库的区别,掌握HIVE的应用场景及Hive与HBase的结合使用。掌握程度:精通。
八、PYTHON语言精通PYTHON语言基础语法及面向对象。精通PYTHON语言的爬虫、WEB、算法等框架。并根据业务可以基于PYTHON语言开发完成的业务功能和系统。掌握程度:精通。
九、机器学习算法熟练掌握机器学习经典算法,掌握算法的原理,公式,算法的应用场景。熟练掌握使用机器学习算法进行相关数据的分析,保证分析结果的准确性。掌握程度:熟练。
十、Spark高级编程技术掌握Spark的运行原理与架构,熟悉Spark的各种应用场景,掌握基于SparkRDD的各种算子的使用;精通SparkStreaming针对流处理的底层原理,熟练应用SparkSql对各种数据源处理,熟练掌握Spark机器学习算法库。达到能够在掌握Spark的各种组件的基础上,能够构建出大型的离线或实时的业务项目。掌握程度:精通。
十一、真实大数据项目实战通过几个真实的大数据项目把之前学习的知识与大数据技术框架贯穿,学习真实的大数据项目从数据采集、清洗、存储、处理、分析的完整过程,掌握大数据项目开发的设计思想,数据处理技术手段,解决开发过程中遇到的问题和技术难点如何解决。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
梧桐老师为你解答
高粉答主

2020-12-23 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:4.8万
采纳率:60%
帮助的人:1482万
展开全部
大数据技术体系太庞杂了,基础技术覆盖数据采集、数据预处理、分布式存储、NOSQL数据库、多模式计算(批处理、在线处理、实时流处理、内存处理)、多模态计算(图像、文本、视频、音频)、数据仓库、数据挖掘、机器学习、人工智能、深度学习、并行计算、可视化等各种技术范畴和不同的层面。另外大数据应用领域广泛,各领域采用技术的差异性还是比较大的。短时间很难掌握多个领域的大数据理论和技术,建议从应用切入、以点带面,先从一个实际的应用领域需求,搞定一个一个技术点,有一定功底之后,再举一反三横向扩展,这样学习效果就会好很多。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zosen007
2020-12-17 · TA获得超过1295个赞
知道小有建树答主
回答量:1679
采纳率:63%
帮助的人:284万
展开全部
看从事大数据的哪个部分。
大数据分三个部分,数据分析、大数据平台的中台和大数据底层处理。
数据分析:统计专业+一门实际业务+计算机数据分析工具。可以参考研究生BA专业。
数据中台:CS专业+大数据方向的算法 (并行计算、机器学习一类的)。研究生起步。
数据底层处理:一定的软件基础+数据库应用。本科即可。

本科不要学大数据专业,四年学不出来,干啥啥不行。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
南京课工场大数据学校
2022-02-16 · 每时每课,给你新机会!
南京课工场大数据学校
北大青鸟中博软件学院成立于2003年,北大青鸟中博依托北京大学雄厚的教育资源,开启了培养高端IT人才的时代。建校十余年来,始终坚持以实践为基础,就业为导向,不忘初心。
向TA提问
展开全部

当前大数据应用尚处于初级阶段,根据大数据分析预测未来、指导实践的深层次应用将成为发展重点。各大互联网公司都在囤积大数据处理人才,从业人员的薪资待遇也很不错。

这里介绍一下大数据要学习和掌握的知识与技能:

①java:一门面向对象的计算机编程语言,具有功能强大和简单易用两个特征。

②spark:专为大规模数据处理而设计的快速通用的计算引擎。

③SSM:常作为数据源较简单的web项目的框架。

④Hadoop:分布式计算和存储的框架,需要有java语言基础。

⑤spring cloud:一系列框架的有序集合,他巧妙地简化了分布式系统基础设施的开发。

⑤python:一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。

互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。

祝你学有所成,望采纳。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式