一个点的导数跟这个点的极限什么关系?
1个回答
展开全部
极限只是一个数:x趋向于x0的极限=f(x0)。而导数则是瞬时变化率,是函数在该点x0的斜率。导数比极限多了一个表达“过程”的部分。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”。
导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。
可导的函数一定连续。不连续的函数一定不可导。因此导数也是一种极限。导数:当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询